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Abstract. In this paper, we describe the application of the novel SURF
(Speeded Up Robust Features) algorithm [1] for the recognition of objects
of art. For this purpose, we developed a prototype of a mobile interactive
museum guide consisting of a tablet PC that features a touchscreen and
a webcam. This guide recognises objects in museums based on images
taken by the visitor. Using different image sets of real museum objects,
we demonstrate that both the object recognition performance as well as
the speed of the SURF algorithm surpasses the results obtained with
SIFT, its main contender.

1 Introduction

Many museums still present their exhibits in a rather passive and non-engaging
way. The visitor has to search through a booklet in order to find descriptions
about the objects on display. However, looking for information in this way is a
quite tedious procedure. Moreover, the information found does not always meet
the visitor’s specific interests. One possibility of making exhibitions more at-
tractive to the visitor is to improve the interaction between the visitor and the
objects of interest by means of a guide. In this paper, we present an interactive
museum guide that is able to automatically find and instantaneously retrieve
information about the objects of interest using a standard tablet PC. Undoubt-
edly, technological developments will lead to less heavy and downsized solutions
in the near future. The focus of this paper is on the vision component used to
recognise the objects.

1.1 Related Work

Recently, several approaches have been proposed that allow visitors to inter-
act via an automatic museum guide. Kusunoki et al. [2] proposed a system for
children that uses a sensing board, which can rapidly recognise type and loca-
tions of multiple objects. It creates an immersing environment by giving audio-
visual feedback to the children. Other approaches include robots that guide users
through museums [3, 4]. However, such robots are difficult to adapt to different
environments, and they are not appropriate for individual use. An interesting



approach using hand-held devices, like mobile phones, was proposed by [5], but
their recognition technique seems not to be very robust to viewing angle or
lighting changes.

Various object recognition methods have been investigated in the last two
decades. More recently, SIFT [6] and its variants such as PCA-SIFT [7] and
GLOH [8] have been successfully applied for many image matching applications.
In this paper, we show that the new SURF (Speeded Up Robust Features) al-
gorithm [1] surpasses SIFT in both speed and recognition accuracy.

1.2 Interactive Museum Guide

The proposed interactive, image-based museum guide is invariant to changes in
lighting, translation, scale, rotation and viewpoint variations. Our object recogni-
tion system was implemented on a Tablet PC using a conventional USB webcam
for image acquisition, see Figure 1. This hand-held device allows the visitor to
simply take a picture of an object of interest from any position and is provided,
almost immediately, with a detailed description of the latter.

Fig. 1. Tablet PC with the USB webcam fixed on the screen. The interface of the
object recognition software is operated via a touchscreen.

An early prototype of this museum guide was shown to the public during the
150 years anniversary celebration of the Federal Institute of Technology (ETH)
in Zurich, Switzerland [9]. The descriptions of the recognised objects of art are



read to the visitors by a synthetic computer voice. This enhances the convenience
of the guide as the visitors can focus on the objects of interest instead of reading
the object descriptions on the screen of the guide.

In order to demonstrate the recognition capabilities of our latest implemen-
tation, we created a database with objects on display in the Landesmuseum. A
sample image of each of the 20 chosen objects is shown in Figure 2.

Fig. 2. Sample images of the 20 chosen art objects from the Landesmuseum.

The remainder of this paper is organised as follows. First, we introduce our
object recognition system in detail (Section 2). Then, we present and discuss
results obtained for a multi-class task (Section 3), and finally conclude with an
overall discussion and some final remarks (Section 4).

2 Object Recognition System

We developed an object recognition system that is based on interest point corre-
spondences between individual image pairs. Input images, taken by the user, are
compared to all model images in the database. This is done by matching their
respective interest points. The model image with the highest number of matches
with respect to the input image is chosen as the one which represents the object
the visitor is looking for.



Fig. 3. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and our approximations thereof using box
filters. The grey regions are equal to zero.

Furthermore, we propose a new object identification strategy based on the
mean Euclidean distance between all matching pairs. The latter proved to yield
better results than the aforementioned traditional approach.

In the following sub-sections we shortly describe the SURF algorithm. Then,
we present the new object selection strategy.

2.1 Fast Interest Point Detection

The SURF feature detector is based on the Hessian matrix. Given a point x =
(x, y)> in an image I, the Hessian matrix H(x, σ) in x at scale σ is defined as
follows

H(x, σ) =
[

Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (1)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2 g(σ) with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).
In contrast to SIFT, which approximates Laplacian of Gaussian (LoG) with

Difference of Gaussians (DoG), SURF approximates second order Gaussian deriva-
tives with box filters, see Figure 3. Image convolutions with these box filters can
be computed rapidly by using integral images as defined in [10]. The entry of an
integral image IΣ(x) at location x = (x, y)> represents the sum of all pixels in
the base image I of a rectangular region formed by the origin and x.

IΣ(x) =
i≤x∑

i=0

j≤y∑

j=0

I(i, j) (2)

Once we have computed the integral image, it is strait forward to calculate the
sum of the intensities of pixels over any upright, rectangular area.

The location and scale of interest points are selected by relying on the deter-
minant of the Hessian. Hereby, the approximation of the second order derivatives
is denoted as Dxx, Dyy, and Dxy. By choosing the weights for the box filters
adequately, we find as approximation for the Hessian’s determinant

det(Happrox) = DxxDyy − (0.9Dxy)2. (3)



Fig. 4. Left: Detected interest points for a Sunflower field. This kind of scenes show
clearly the nature of the features obtained from Hessian-based detectors. Middle: Haar
wavelet filters used with SURF. Right: Detail of the Graffiti scene showing the size of
the descriptor window at different scales.

For more details, see [1]. Interest points are localised in scale and image space
by applying a non-maximum suppression in a 3× 3× 3 neighbourhood. Finally,
the found maxima of the determinant of the approximated Hessian matrix are
interpolated in scale and image space.

2.2 Interest Point Descriptor

In a first step, SURF constructs a circular region around the detected interest
points in order to assign a unique orientation to the former and thus gain in-
variance to image rotations. The orientation is computed using Haar wavelet
responses in both x and y direction as shown in the middle of Figure 4. The
Haar wavelets can be easily computed via integral images, similar to the Gaus-
sian second order approximated box filters. Once the Haar wavelet responses
are computed, they are weighted with a Gaussian with σ = 2.5s centred at the
interest points. In a next step the dominant orientation is estimated by summing
the horizontal and vertical wavelet responses within a rotating wedge, covering
an angle of π

3 in the wavelet response space. The resulting maximum is then
chosen to describe the orientation of the interest point descriptor.

In a second step, the SURF descriptors are constructed by extracting square
regions around the interest points. These are oriented in the directions assigned
in the previous step. Some example windows are shown on the right hand side
of Figure 4. The windows are split up in 4 × 4 sub-regions in order to retain
some spatial information. In each sub-region, Haar wavelets are extracted at
regularly spaced sample points. In order to increase robustness to geometric
deformations and localisation errors, the responses of the Haar wavelets are
weighted with a Gaussian, centred at the interest point. Finally, the wavelet
responses in horizontal dx and vertical directions dy are summed up over each
sub-region. Furthermore, the absolute values |dx| and |dy| are summed in order
to obtain information about the polarity of the image intensity changes. Hence,



Fig. 5. The descriptor entries of a sub-region represent the nature of the underlying
intensity pattern. Left: In case of a homogeneous region, all values are relatively low.
Middle: In presence of frequencies in x-direction, the value of

P |dx| is high, but all
others remain low. If the intensity is gradually increasing in x-direction, both valuesP

dx and
P |dx| are high.

the underlying intensity pattern of each sub-region is described by a vector

v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|). (4)

The resulting descriptor vector for all 4× 4 sub-regions is of length 64. See Fig-
ure 5 for an illustration of the SURF descriptor for three different image intensity
patterns. Notice that the Haar wavelets are invariant to illumination bias and
additional invariance to contrast is achieved by normalising the descriptor vector
to unit length.

Rotation-invariant object recognition is not always necessary. Therefore, a
scale-invariant-only version of the SURF descriptor was introduced in [1] and
denoted ’Upright SURF’ (U-SURF). Indeed, in the scenario of a hand-held in-
teractive museum guide, where the museum visitor holds the device in both
hands, it is save to assume that images of objects are mostly taken in an upright
position. Therefore, U-SURF can be used as an alternative descriptor with the
benefit of both increased speed and discrimination power. U-SURF is faster than
SURF as it does not perform the orientation related computations.

In this paper, we compare the results for SURF, referred to as SURF-64,
and some alternative version (SURF-36, SURF-128) as well as for the upright
counterparts (U-SURF-64, U-SURF-36, U-SURF-128) that are not invariant to
image rotation. The difference between SURF and its variants lies in the dimen-
sion of the descriptor. SURF-36 extracts the descriptor vector from equation (4)
for only 3× 3 subregions. SURF-128 is an extended version of SURF that treats
sums of dx and |dx| separately for dy < 0 and dy ≥ 0. Similarly, the sums of dy

and |dy| are split up according to the sign of dx. This doubles the number of
features (128 instead of 64) resulting in a more distinctive descriptor, which is
not much slower to compute, but slower to match due to its higher dimensional-
ity (but still faster to match than SIFT). The fast matching speed for all SURF
versions is achieved by a single step added to the indexing based on the sign of



the Laplacian (trace of the Hessian matrix) of the interest point. The sign of
the Laplacian distinguishes bright blobs on a dark background from the inverse
situation. ’Bright’ interest points are only matched against other ‘bright’ inter-
est points and similarly for the ‘dark’ ones. This minimal information permits
to almost double the matching speed and it comes at no computational costs,
as it has already been computed in the interest point detection step.

2.3 Object Recognition

Traditional object recognition methods rely on model images, each representing a
single object in isolation. In practice, however, the necessary segmentation is not
always affordable or even possible. For our object recognition application, we use
model images where the objects are not separated from the background. Thus,
the background also provides features for the matching task. In any given test
image, only one object or object group that belongs together is assumed. Hence,
object recognition is achieved by image matching. Extracted interest points of
the input image are compared to the interest points of all model images. In
order to create a set of interest point correspondences M , we used the nearest
neighbour ratio matching strategy [11, 6, 12]. This states that a matching pair is
detected if its Euclidean distance in descriptor space is closer than 0.8 times the
distance to the second nearest neighbour.

The selected object is the one figuring in the model image with the highest
recognition score SR. This score is traditionally the number of total matches in
M . However, the presence of mismatches often lead to false detections. This can
be avoided with the help of the following new alternative for the estimation of
the recognition score. Hereby, we calculate the mean Euclidean distance to the
individual nearest neighbours for each image pair. This value is typically smaller
for corresponding image pairs than for non-corresponding ones, and it does not
depend on the number of extracted features in the individual images. Hence, we
maximise the following recognition score

SR = argmax
i

(
Ni√∑Ni

j=1 d2
ij

)
(5)

and chose the object for which the mean distance of its matches is smallest. Ni

denotes the number of matches in image i. Furthermore, dij is the Euclidean dis-
tance in the descriptor space between a matching pair of keypoints. The matching
criteria is that this distance is closer than 0.8 times the distance to the second
nearest neighbour.

3 Experimental Results

For each of the 20 objects of art in our database, images of size 320× 240 were
taken from different viewing angles. This allows for some degree of view-point
independence. The database includes a total of 205 model images. These are



grouped in two model sets (M1 and M2) with 105 and 100 images, respectively.
The reasons for the choice of two different model sets are the use of two different
cameras and the presence of different lighting conditions. Moreover, less model
images for a given object represents a more challenging situation for object
recognition.

For similar reasons, we built 3 different test sets (T1-T3) with a total of
116 images (42, 34, 40). Each set contains one or more images of all objects.
These objects of art are made of different materials, have different shapes and
encompass wooden statues, paintings, metal and stone items as well as objects
enclosed in glass cabinets which produce interfering reflections. The images were
taken from substantially different viewpoints under arbitrary scale, rotation and
varying lighting conditions.

The test image sets were evaluated on each of the model sets. The obtained
recognition results are shown in Table 1 and 2. Listed are the results for the

Method Time Recognition Rate Total
D(s)+M(s) T1/M1 T2/M1 T3/M1 T1/M2 T2/M2 T3/M2 (%)

SURF-36 19+26 81 79 85 71 94 78 81.0
SURF-64 19+38 88 79 90 69 100 78 83.6
SURF-128 19+59 81 91 90 71 97 75 83.5

U-SURF-36 16+26 74 79 90 74 91 75 80.2
U-SURF-64 16+38 86 85 88 74 94 78 83.8
U-SURF-128 16+59 83 94 95 76 94 80 86.5

SIFT 136+83 79 88 90 76 91 75 82.7

Table 1. Image matching results for different SURF versions and SIFT. Listed are
both the total detection D(s) and matching time M(s) for all 3 test sets combined with
the model sets.

standard recognition score based on the maximum number of matches (Table 1)
and the mean Euclidean distance (Table 2) as described in Equation (5). It can be
seen that most versions of SURF outperform SIFT for most test sets while being
substantially faster for both computation and matching. The recognition rates
for the new recognition score, based on the mean Euclidean distance, increase
up to 10%. Note that both the SIFT and SURF descriptors were applied on the
same interest points for all experiments. The reported computation times were
achieved on a Linux Tablet PC equipped with an Intel Pentium M processor
running at 1.7 GHz.

Figures 6 and 7 show cases where SURF and SIFT fail to recognise the same
foreground objects. On the bottom of Figure 6, two image pairs are displayed
where the foreground object is not correctly recognised by the SURF algorithm.
Note however, that a correct match was found for valid objects that are visible
in the background. In contrast, SIFT did not find enough matches to allow for



Method Time Recognition Rate Total
D(s)+M(s) T1/M1 T2/M1 T3/M1 T1/M2 T2/M2 T3/M2 (%)

SURF-36 19+26 86 88 90 76 97 73 84.5
SURF-64 19+38 83 91 88 83 97 83 87.1
SURF-128 19+59 88 85 93 79 100 85 88.0

U-SURF-36 16+26 86 100 98 81 100 85 91.1
U-SURF-64 16+38 86 94 93 81 100 85 89.4
U-SURF-128 16+59 86 94 95 86 100 90 91.5

SIFT 136+83 83 91 100 76 94 80 86.9

Table 2. Image matching results for different SURF versions and SIFT with the new
matching strategy. Listed are both the total detection D(s) and matching time M(s)
for all test sets combined with the model sets.

a correct recognition of model objects situated either in the foreground or the
background of the depicted test images.

Figures 8 and 9 show cases, where either SIFT or SURF fail to recognise the
correct foreground object. Note that the goblet shown in the top row of Figure 8
was twice not correctly recognised by SIFT. Not a single match was found on the
object itself, but many on the enclosing showcase. However, many model objects
contained in the database are enclosed in showcases and can thus lead to false
matches when it comes to the recognition of the foreground object of interest.

Figure 9 (left) shows a case where only SURF produces a false recognition.
Notice that many false matches were found between the object of interest and
a background object that is not part of the model database. Hence, test objects
can be falsely recognised due to model images that contain similar arbitrary
background objects that are not part of the objects of interest.

Finally, Figure 9 (right) shows a successfully recognised object. In that spe-
cific case, the background information was helpful for the recognition of the
object.

4 Discussion and Conclusion

In this paper, we described the functionality of an interactive museum guide,
which allows to robustly recognise museum exhibits under difficult environmental
conditions. Our guide is robust to scale (SURF, U-SURF) and rotation (SURF).
Changes of the viewing angle are covered by the overall robustness of the de-
scriptor up to some extent. This museum guide is running on standard low-cost
hardware.

4.1 Object Recognition

With the computational efficiency of SURF, object recognition can be performed
instantaneously for the 20 objects on which we tested the different schemes. The



images were taken with a low-quality webcam. However, this affected the results
only up to a limited extent. Note that in contrast to the approach described in [5],
all the tested schemes do not use colour information for the object recognition
task. This is one of the reasons for the above-mentioned recognition robustness
under various lighting conditions. We experimentally verified that illumination
variations, caused by artificial and natural lighting, lead to low recognition re-
sults when colour was used as the only source of information.

The fact that our model images include background information can be help-
ful for the recognition of objects. Especially in cases where the objects of interest
are too similar or do not provide enough robust and discriminant features, back-
ground information may allow to recognise the object successfully. However, if
a dominating background object is present in the test image, our recognition
methods find more matches on the object in the background rather than on the
one in the foreground and this leads to a false recognition, see Figure 6.

4.2 Automatic Room Detection

With a larger number of objects to be recognised, the matching accuracy and
speed decrease. Also, additional background clutter can enter the database that
may generate mismatches and thus lead to false detections. However, in a typical
museum the proposed interactive museum guide has to be able to cope with ten-
thousands of objects with possibly similar appearance. A solution to this problem
would be to determine the visitor’s location by adding a Bluetooth receiver to the
interactive museum guide that can pick up signals emitted from senders placed
in different exhibition rooms of the museum [9]. This information can then be
used to reduce the search space for the extraction of relevant objects. Hence, the
recognition accuracy is increased and the search time reduced. Moreover, this
information can be used to indicate the user’s current location in the museum.
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Fig. 6. Common image matching mistakes. Both SIFT (top row) and SURF (bottom
row) fail to recognise the same test objects. In each of the four two-image combinations,
test images are shown on the top and matched model images on the bottom.



Fig. 7. Common image matching mistakes. Both SIFT (top row) and SURF (bottom
row) fail to recognise the same test object. In each of the four two-image combinations,
test images are shown on the top and matched model images on the bottom.



Fig. 8. Individual image matching mistakes produced by SIFT. In each of the four
image combinations, test images are shown in the top row and the matched model
image in the bottom row.



Fig. 9. Individual image matching mistake produced by SURF (left) and a successfully
recognised object (right). The test image is shown on the top and the matched model
image on the bottom.


