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Abstract— This paper addresses the problem of automatic
construction of a hierarchical map from images. Our approach
departs from a large collection of omnidirectional images taken
at many locations in a building. First a low-level map is built
that consists of a graph in which relations between images are
represented. For this we use a metric based on visual landmarks
(SIFT features) and geometrical constraints. Then we use a
graph partitioning method to cluster nodes and in this way
construct the high-level map. Experiments on real data show
that meaningful higher and lower level maps are obtained,
which can be used for accurate localization and planning.

Index Terms— mobile robots, vision based navigation, hier-
archical map building, topological map

I. INTRODUCTION

Mobile robot localization and navigation requires an in-
ternal representation of the environment. Traditionally such
a model is represented as a 2D geometric model of the
workspace of the robot, indicating admissible and non-
admissible areas. Because of recent progress in sensor tech-
nology (vision sensors, 2D laser scanners), these models tend
to become quite complex (such as 3D planar maps with
texture, 3D landmark positions), resulting in a large number
of parameters that have to be stored and estimated.

Hierarchal approaches combining higher level conceptual
maps (usually topological maps - graph structures with nodes
representing places and edges or links representing possible
transitions) with lower-level, geometrically accurate, local
maps have a number of advantages. One of the problems
with complex (3D) maps is that the number of parameters
which have to be estimated in a SLAM procedure increases
very fast with the spatial extent of the map. The advantage of
splitting the representation into smaller parts is that it makes
better parameter estimation possible, if the new problem of
maintaining consistency between local representations can be
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solved [12]. A second advantage of a hierarchical representa-
tion is that hierarchical path planning methods can be used.
We show in [3] that such planning methods have compu-
tational advantages over non-hierarchical planning methods.
Finally, a third advantage of a hierarchy of maps is that it can
facilitate the interaction of the robot with humans, because
the elements in the higher-level map (e.g., the nodes in the
graph) can be made to correspond to concepts that make
sense to humans (rooms, corridors), instead of metric (x,y)
coordinates that are not intrinsically meaningful to humans
in office and home environments.

The issue addressed in this paper is how to create a higher
level conceptual map which can be used in a hierarchical
framework. Different approaches have been proposed in ear-
lier work. In human augmented mapping, a human supervisor
indicates which places are to serve as nodes in the graph [2].
Alternatively, an existing metric representation can be used
to derive a higher level topological map using geometrical
methods such as generalized Voronoi graphs [5]. It is also
possible to use sensory data directly for the creation of a
higher level map. In [16], [10] a set of images of the robot’s
environment is grouped based on the presence of a number
of automatically extracted landmarks.

In this paper we describe an alternative algorithm for
generating a higher level topological map directly from
images. The algorithm is based on an appearance-based rep-
resentation, which is a representation where the environment
is not modelled geometrically, but as an ‘appearance map’
that consists of a collection of sensor readings obtained at
various poses [11],[14],[8]. In our approach we do not assume
the poses to be known but just use an unordered collection of
omnidirectional images taken at many places in the building.
The algorithm first constructs a graph (‘low level’ topological
map) from all images by using a grouping criterion that takes
into account both the presence of the visual landmarks (SIFT
features) and the constraints imposed by the geometry of
the environment. This initial step is similar to an algorithm
from a different field [21] that was used to group images



from the same scene of a TV movie. We further define
a criterion for grouping the images of the environment so
that images from a convex area, a room for example, are
naturally grouped together. This criterion corresponds to the
normalized graph cut criteria from graph theory [9]. The
exact solution is computationally expensive and we use a
standard approximate solution [9].

In section 2 we give a brief overview of space representa-
tions in robotics and relate them to the method presented
in this paper. In section 3 we describe how to generate
a low-level topological map of the space from the images
of the environment. Section 4 gives some details about the
underlying computer vision algorithms needed to do that.
Section 5 describes our graph-theoretic method for grouping
the images and extracting a higher level conceptual map
of the space from the low-level topological map defined in
sections 3 and 4. Our experimental results are presented and
discussed in Section 6.

II. RELATED WORK - HIGHER LEVEL (TOPOLOGICAL)
MAPS FROM IMAGES

Our method is an appearance map method based on images
obtained by the robot using a visual sensor. The images are
2D projections of the 3D space. Standard algorithms for 3D
reconstruction from images [7] usually extract the metric
information incrementally. Typically the different levels of
extracted metric information are:

Step 1: At this level images are grouped based solely on
their immediate appearance. Images from the same part of the
environment (a room, a corridor) are expected to look sim-
ilar. Typically, images are grouped together by determining
whether they have similar landmarks. This grouping based
on immediate image appearance produces a straightforward
higher level representation of space. However, in large en-
vironments the probability that images from completely dif-
ferent places are grouped together can become high. This is
sometimes called ‘perceptual aliasing’. To reduce perceptual
aliasing, [16] proposes to take into account the horizontal
ordering of landmarks in the image, yielding what they call
‘fingerprint representations’. Similarly, [10] proposes a global
description of images using SIFT features [13] as landmarks
and their distribution within the image. This provided a more
distinctive representation of the space.

Step 2: At this level the images are grouped based on
their immediate appearance but also on the geometry of the
space. From two images and a set of matching landmarks
one can perform two-view geometric reconstruction of the
space (see [7] and section IV). This requires that not only
similar landmarks are present, but also that they come from
the same real-world 3D positions (up to a scale factor).
This requirement is much stricter than those in [16],[10].

Therefore, perceptual aliasing is very rare even in large
environments (see [21] and also the remainder of this paper).

Step 3: By matching the landmarks over more than two
views it is possible to reconstruct the camera poses for the
images, 3D positions of the landmarks, and finally perform
dense 3D reconstruction of the space (up to a scale factor)
[7]. This dense 3D reconstruction can then be used to obtain
a precise 2D geometrical map of the environment. A higher
level conceptual map can, in turn, be extracted from this 2D
geometrical map using the methods described in [23],[15].
Note that to apply these methods we need to use complex
and computationally expensive algorithms to perform the
complete 3D reconstruction, and that in general the 3D recon-
struction problem cannot be considered completely solved,
especially for large environments.

The metric reconstruction in this paper stops at step 2,
where geometric constraints are imposed, and for example
information about occlusions and visibility is already present.
In the remainder of this paper we show (sections 3-5) how
to use this information and build a natural higher-level
representation of the space.

III. LOWER LEVEL TOPOLOGICAL MAP FROM IMAGES
USING APPEARANCE AND GEOMETRICAL CONSTRAINTS

A general definition of a topological map is that it is a
graph-like representation of space. A set of n nodes V of
the graph represent distinct positions in space, and edges or
links of the graph encode how to navigate from one node to
the other [6]. The nodes and the edges can be enriched with
some local metric information.

In this paper, as is typical in appearance-based approaches,
each node represents a location and corresponds to an image
taken at that location. As the result from n images we get
a graph with n nodes that is described by a symmetric
matrix S called the ‘similarity matrix’. For each pair of nodes
i,jε[1, ..., n] the value of the element Sij from S defines the
similarity of the nodes. In our approach Sij is equal to 1 if
and only if it is possible to perform 3D reconstruction of the
local space from the two images corresponding to the nodes.
Otherwise there is no link between the nodes and Sij = 0.
Our 3D reconstruction is based on the Scale Invariant Feature
Transform (SIFT) features [13] as the automatically detected
landmarks in the image. The algorithm we are using for the
3D reconstruction is described in more detail in section IV.
An example of such a graph that we obtained from a real
data set is given in figure 2b.

This graph contains, in a natural way, information about
how the space in an indoor environment is separated by the
walls and other barriers. Images from a convex space, for
example a room, will have many connections between them,
and just a few connections to images from another convex



space, for example a corridor, that is connected with the room
via a narrow passage, for example a door. In section 5 we
describe how to extract such groups of images automatically
from the graph (V, S).

There are various ways to define the similarity metric for
Sij . The simple metric we use is directly related to the robot
navigation task. For localization and navigation the robot can
use the same algorithm as the one used to define the edges
of the graph (V, S). An edge in the graph denotes that 3D
reconstruction is possible between the images that correspond
to the nodes. This also means that if the robot is at one
node it can determine the relative location of the other node.
Therefore, if there are no obstacles in between, the robot
can directly navigate from one node to the other (as, e.g., in
[17]). If there are obstacles, one could rely, for example, on
an additional reactive algorithm for obstacle avoidance that
is using range sensors. Furthermore, additional information
can be associated with the edges of the graph. For example,
if we reconstruct the metric positions of the nodes (using the
images or if we measure them in some other way), we could
also associate the Euclidean distance between the nodes with
each edge. This could be used for better navigation and path
planning using the graph. However, this is beyond the scope
of this paper.

IV. VISUAL LANDMARKS AND GEOMETRIC
CONSTRAINTS

Having described the general process of constructing the
lower level topological map, we proceed to describe some
of the details of the underlying computer vision algorithms.
First we extract distinctive points from images. Examples are
a corner, T-junction, a white dot on black background etc.
Such points are often used in the computer vision community
as automatically detected landmarks. Here we use the SIFT
feature detector [13]. The SIFT feature detector extracts
also the scale of the feature point and describes the local
neighborhood of the point by a 128-element rotation and
scale invariant vector. This vector descriptor is also robust
to some light changes.

A. Matching Landmarks

Visual landmarks are used often in robotics for navigation
[22],[19],[18]. It is possible to reconstruct both the camera
images and the 3D positions of the landmarks by matching
(or tracking) landmarks through images. On-line simultane-
ous localization and reconstruction of landmark positions
was presented in [1], but currently only for small scale
environments.

In this paper we consider the general case when we start
with a set of unordered images of the environment. This is
similar to [20]. In practice we often have some information

about ordering of the images (e.g. a movie as in [1]) or some
other sensor readings (odometry for example), which should
be used in that case.

Most 3D reconstruction algorithms [7] start with finding
similar landmarks in pairs of images. When two images are
consecutive frames of an image sequence we could track
the landmarks from one image to the other [1]. However,
it is much more difficult to find matching landmarks in
an unordered set of images. Firstly, we need to check all
the pairs of images, which is computationally expensive.
Secondly, there are no additional constraints as is generally
the case in an image sequence.

In this paper we use a heuristic similar to [21]. For
each landmark from one image we find the best and the
second best matching landmark from the second image. The
goodness of the match is defined by the Euclidean distance
between the landmark descriptors. If the goodness of the
second best match is less then 0.8 of the best one it means that
the match is very distinctive. According to the experiments in
[13], this typically discards 95% of the false matches and less
then 5% of the good ones. This is repeated for each pair of
images and it is computationally expensive. Fast approximate
methods were discussed in [13]. Since our data sets were not
very big we performed the full extensive search.

B. Geometric Constraints

The method described in the previous section finds the
possible matches for each pair of images from our data
set. Let there be N matching landmark points between the
images m and l. The 2D image positions of the points in
the m-th image in the homogenous coordinates are denoted
as {�pm

1 , ..., �pm
N}. The corresponding points in the l-th image

are {�pl
1, ..., �p

l
N}. If the i-th point belongs to the static scene,

then, for a projective camera, the positions are related by:

(�pm
i )T F�pl

i = 0 (1)

where the matrix F is also known as the ’fundamental
matrix’. Estimating F is an initial step for 3D space recon-
struction from images.

In case there are initially many false matches [21], they
must be removed using a method to detect and remove
outliers. Standard robust M-estimators are commonly used,
which can deal with a limited number of outliers. If there
are more outliers, the robust algorithm called RANSAC is
commonly used [7]. It was shown [24] that a combination
that performs best in many cases is when RANSAC is used
first and then the M-estimator. Here, we use the distinctive
matches criterion, described above and in [13], which already
discards many false matches. In our experiments we observed
that the number of false matches is small and it is possible
to use the robust M-estimator directly. We used the Huber



M-estimator and the standard 8-point algorithm [7] for esti-
mating the fundamental matrix F .

Residuals of fitting the model (1) to each pair of images
[7] are used to calculate the global standard deviation σglobal.
This standard deviation is used to decide when the fundamen-
tal matrix is properly calculated. The σglobal is estimated
robustly using the maximum absolute difference estimate.
The whole procedure, then, is as follows:

• extract SIFT landmarks from all images
• find distinctive matches between each pair of images
• if there are more than 8 matches:

– estimate the fundamental matrix using the M esti-
mator (could be RANSAC)

– discard matches that deviate more than 2.5σglobal

– if there are still more than 8 matches, add an edge in
the graph - set the similarity between these images
to 1.

V. CONSTRUCTING HIGHER LEVEL TOPOLOGICAL MAP
USING GRAPH CUTS

The central idea behind our method to construct the higher
level topological map is to cut the lower level topological map
(described above) into a number of separate clusters, each
of which becomes a higher level node or higher level state.
We will start by introducing some graph-theoretic terms. The
degree of the i-th node of the graph (V, S) is defined as the
sum of all the edges that start from that node: di =

∑
j Sij .

For nodes A (where A is subset of V ), volume is defined
as vol(A) =

∑
i di. vol(A) describes the ‘strength’ of the

interconnections within the subset A. Graph V can be divided
into two subsets A and B by cutting a number of edges. The
sum of the values of the edges that are cut is called a graph
cut:

cut(A,B) =
∑

iεA,jεB

Sij (2)

One may cut V into a number of clusters by minimizing
(2). This would mean that the graph is cut at the weakly
connected places, which usually correspond to doors between
the rooms or other narrow passages. However, such segmen-
tation criteria often leads to undesirable results. For example,
if there is an isolated image connected to the rest of the graph
by only one link, then by cutting only this link we minimize
(2). To avoid such artifacts we use a normalized version. The
normalized graph cut separates the graph V into two subsets
A and B by minimizing the following criterion:

nCut(A,B) = (
1

vol(A)
+

1
vol(B)

)cut(A,B). (3)

Minimizing this criterion means cutting a minimal number
of connections between the two subsets but also choosing
subsets with strong interconnections. This criterion naturally

groups together images from a convex area, like a room, and
makes cuts between areas that are weakly connected. The
algorithm is simply applied again to obtain more clusters.
Finding the optimal solution is computationally expensive.
In this paper we use the fast approximate solution from [9].

The following scenario can give another perspective on
the normalized cut criterion. An edge means that the robot
might navigate from one node to the other as described in
Section III. If we assume that the robot randomly moves
from a node to a connected node, it is possible to show [9]
that: nCut(A,B) = P (A → B|A) + P (B → A|B). Here
P (A → B|A) is the probability of jumping from subset A to
subset B if we are already in A and P (B → A|B) is the other
way around. This means that with this random movement, the
segmentation is such that the robot has the lowest probability
of moving from one cluster to the other.

In [3] we show how path planning can be done using the
resulting hierarchical map (the combination of the lower level
and higher level topological map), and we show that planning
is actually much more efficient using the hierarchical map,
compared to just using the lower level map.

VI. EXPERIMENTS

The experiments described in this paper were designed to
investigate the validity of the method to extract the lower
level topological map from the images, and the method to
extract the higher level topological map from the lower-
level map. The experiments were performed using a robot
equipped with an omnidirectional camera with a hyperbolic
mirror. Circular images were first transformed to panoramic
images. Next, the SIFT features were extracted using the
standard method [13].

A. Experiment 1: Robustness

Some experimenting was done to test robustness for vari-
ability in the images. Figure 1 illustrates the robustness of the
method. Despite the different light conditions and occlusions,
there were still enough matches to estimate the fundamental
matrix. Note that constraint (1) did not remove all false
matches. Matches that are false but still close to constraint
(1) are not removed.

B. Experiment 2: Perceptual aliasing

From a data set of 234 images from an office environment
we constructed the (lower level) graph using the method
described in Section III. The links and the nodes are shown
in figure 2. The environment consisted of 3 rooms and a
corridor. Two rooms were on one side of the corridor and
one on the other side (see also figure 3 which shows the
actual layout of the rooms). Figure 2a presents the graph
when we match images based only on the presence of the



a) occlusion (the person in the middle of the image)

b) different light conditions (two lights turned on or off)

Fig. 1. Pairs of panoramic images taken at approximately 1m distance
from each other. The lines indicate the matching landmarks between the
two images.

0 2 4 6 8 10 12 14-2

-1

0

1

2

3

meters

m
et

er
s

a) just appearance (Step 1)

0 2 4 6 8 10 12 14-2

-1

0

1

2

3

meters

m
et

er
s

b) with geometric constraints (Step2)

Fig. 2. Reducing perceptual aliasing using geometric constraints. Bird’s
eye view of the environment with the locations where each of images were
taken.

landmarks (see section 2, step 1). The result of taking into
account the geometrical constraints is that from the total of
3077 edges, 541 were discarded. For our environment, this
removed all perceptual aliasing problems from the graph, as
shown in figure 2b.

a) 6 clusters

b) 7 clusters

Fig. 3. Higher level conceptual grouping using minimal normalized cuts.
Bird’s eye view of the environment with the locations where each of images
was taken. Each symbol indicates a specific higher level state. The grouping
is obtained directly from the images without using the known ground truth
locations.

C. Experiment 3: Building hierarchical map

The normalized graph cut clustering algorithm (section
V) was applied to the graph shown in figure 2b. The
results, presented in figure 3, show meaningful and natural
segmentation of the space. Note that this segmentation was
obtained directly from the images in an unsupervised way.
One only needs to select the number of clusters, cluster labels
need not be assigned to images by a user, and ground truth
(actual positions where images were captured) is not used.
The results for two different numbers of clusters are shown
in the figure.

D. Experiment 4: Higher Level Localization

We applied the algorithm to a data set that contained
images that cover a much larger area. Again, a meaningful
and natural segmentation of the space is obtained (see figure
4).



For this data set, we perform an experiment to investigate
whether the robot can, given a single image it is assumed to
observe currently, determine the correct corresponding higher
level cluster or higher level state. We select one image from
the data set and assume that this is the image observed by
the robot. We use the rest of the images as the map. We
compute the links of the current image to the images in the
map (Section III). The current higher level cluster is then
estimated by the robot in a simple way: we look at the cluster
labels of the images that have links to the current image and
decide the current image’s cluster label by a majority vote.
This data base has 240 images. For only 5 images the higher
level cluster was estimated incorrectly, and they were all at
the borders of the clusters.

Note that without any additional information we need to
check all the images in order to find the higher level node. It
is also possible to speed up this process as discussed in [4].

Fig. 4. Higher level conceptual grouping using minimal normalized cuts in
a larger environment. Bird’s eye view of the environment with the locations
where each of the image was taken. Each symbol indicates a specific higher
level state. The grouping is obtained directly from the images without using
the known ground truth locations.

VII. CONCLUSIONS AND FURTHER WORK

We presented an algorithm for automatically generating
hierarchical maps from images. Lower level maps are directly
derived from images, higher-level maps are derived from
the lower level maps. Experiments on real data show that
meaningful hierarchical maps can be obtained. Advantages
include its robust handling of the complexities of vision, its
appearance-based nature which does not require extensive
estimation of metric information, and the possibility for
efficient path planning [3]. Our method currently requires
one to specify only the number of clusters. In future work
we would like to automatically select the number of clusters
as well. Online versions of the algorithm (see [4])are also
interesting for further research.
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