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Abstract

No feature-based vision system can work unless good

features can be identi�ed and tracked from frame to

frame. Although tracking itself is by and large a solved

problem, selecting features that can be tracked well and

correspond to physical points in the world is still hard.

We propose a feature selection criterion that is optimal

by construction because it is based on how the tracker

works, and a feature monitoring method that can de-

tect occlusions, disocclusions, and features that do not

correspond to points in the world. These methods are

based on a new tracking algorithm that extends pre-

vious Newton-Raphson style search methods to work

under a�ne image transformations. We test perfor-

mance with several simulations and experiments.

1 Introduction
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Is feature tracking a solved problem? The exten-
sive studies of image correlation [4], [3], [15], [18], [7],
[17] and sum-of-squared-di�erence (SSD) methods [2],
[1] show that all the basics are in place. With small
inter-frame displacements, a window can be tracked
by optimizing some matching criterion with respect to
translation [10], [1] and linear image deformation [6],
[8], [11], possibly with adaptive window size[14]. Fea-
ture windows can be selected based on some measure
of texturedness or cornerness, such as a high standard
deviation in the spatial intensity pro�le [13], the pres-
ence of zero crossings of the Laplacian of the image
intensity [12], and corners [9], [5]. Yet, even a re-
gion rich in texture can be poor. For instance, it can
straddle a depth discontinuity or the boundary of a
re
ection highlight on a glossy surface. In either case,
the window is not attached to a �xed point in the
world, making that feature useless or even harmful to
most structure-from-motion algorithms. Furthermore,
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even good features can become occluded, and trackers
often blissfully drift away from their original target
when this occurs. No feature-based vision system can
be claimed to really work until these issues have been
settled.

In this paper we show how to monitor the quality of
image features during tracking by using a measure of
feature dissimilarity that quanti�es the change of ap-
pearance of a feature between the �rst and the current
frame. The idea is straightforward: dissimilarity is the
feature's rms residue between the �rst and the current
frame, and when dissimilarity grows too large the fea-
ture should be abandoned. However, in this paper we
make two main contributions to this problem. First,
we provide experimental evidence that pure transla-
tion is not an adequate model for image motion when
measuring dissimilarity, but a�ne image changes, that
is, linear warping and translation, are adequate. Sec-
ond, we propose a numerically sound and e�cient way
of determining a�ne changes by a Newton-Raphson
stile minimization procedure, in the style of what Lu-
cas and Kanade [10] do for the pure translation model.
In addition, we propose a more principled way to se-
lect features than the more traditional \interest" or
\cornerness" measures. Speci�cally, we show that fea-
tures with good texture properties can be de�ned by
optimizing the tracker's accuracy. In other words, the
right features are exactly those that make the tracker
work best. Finally, we submit that using two models of
image motion is better than using one. In fact, trans-
lation gives more reliable results than a�ne changes
when the inter-frame camera translation is small, but
a�ne changes are necessary to compare distant frames
to determine dissimilarity. We de�ne these two models
in the next section.

2 Two Models of Image Motion

As the camera moves, the patterns of image inten-
sities change in a complex way. However, away from



occluding boundaries and near surface markings, these
changes can often be described as image motion:

I(x; y; t+� ) = I(x��(x; y; t; � ); y��(x; y; t; � )) : (1)

Thus, a later image taken at time t+� can be obtained
by moving every point in the current image, taken at
time t, by a suitable amount. The amount of motion
� = (�; �) is called the displacement of the point at
x = (x; y).

The displacement vector � is a function of the im-
age position x, and variations in � are often noticeable
even within the small windows used for tracking. It
then makes little sense to speak of \the" displacement
of a feature window, since there are di�erent displace-
ments within the same window. An a�ne motion �eld

is a better representation:

� = Dx + d

where

D =

�
dxx dxy
dyx dyy

�

is a deformation matrix, and d is the translation of
the feature window's center. The image coordinates
x are measured with respect to the window's center.
Then, a point x in the �rst image I moves to point
Ax+ d in the second image J , where A = 1+D and
1 is the 2� 2 identity matrix:

J(Ax + d) = I(x) : (2)

Given two images I and J and a window in image
I, tracking means determining the six parameters that
appear in the deformation matrixD and displacement
vector d. The quality of this estimate depends on the
size of the feature window, the texturedness of the im-
age within it, and the amount of camera motion be-
tween frames. When the window is small, the matrix
D is harder to estimate, because the variations of mo-
tion within it are smaller and therefore less reliable.
However, smaller windows are in general preferable
for tracking because they are less likely to straddle
a depth discontinuity. For this reason, a pure trans-

lation model is preferable during tracking, where the
deformation matrix D is assumed to be zero:

� = d :

The experiments in sections 6 and 7 show that the
best combination of these two motion models is pure
translation for tracking, because of its higher reliabil-
ity and accuracy over the small inter-frame motion of
the camera, and a�ne motion for comparing features

between the �rst and the current frame in order to
monitor their quality. In order to address these issues
quantitatively, however, we �rst need to introduce our
tracking method.

3 Computing Image Motion

Because of image noise and because the a�ne mo-
tion model is not perfect, equation (2) is in general
not satis�ed exactly. The problem of determining the
motion parameters is then that of �nding the A and
d that minimize the dissimilarity

� =

Z Z
W

[J(Ax+ d) � I(x)]2 w(x) dx (3)

where W is the given feature window and w(x) is a
weighting function. In the simplest case, w(x) = 1.
Alternatively, w could be a Gaussian-like function to
emphasize the central area of the window. Under pure
translation, the matrix A is constrained to be equal to
the identity matrix. To minimize the residual (3), we
di�erentiate it with respect to the unknown entries of
the deformationmatrixD and the displacement vector
d and set the result to zero. We then linearize the
resulting system by the truncated Taylor expansion

J(Ax + d) = J(x) + gT (u) : (4)

This yields (see [16]) the following linear 6�6 system:

Tz = a (5)

where zT =
�
dxx dyx dxy dyy dx dy

�
collects

the entries of the deformation D and displacement d,
the error vector

a =

Z Z
W

[I(x)� J(x)]

2
6666664

xgx
xgy
ygx
ygy
gx
gy

3
7777775
wdx

depends on the di�erence between the two images, and
the 6� 6 matrix T , which can be computed from one
image, can be written as

T =

Z Z
W

�
U V

V T Z

�
w dx (6)

where

U =

2
664

x2g2x x2gxgy xyg2x xygxgy
x2gxgy x2g2y xygxgy xyg2y
xyg2x xygxgy y2g2x y2gxgy
xygxgy xyg2y y2gxgy y2g2y

3
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V T =

�
xg2x xgxgy yg2x ygxgy
xgxgy xg2y ygxgy yg2y

�

Z =

�
g2x gxgy
gxgy g2y

�
:

Even when a�ne motion is a good model, equation
5 is only approximately satis�ed, because of the lin-
earization of equation (4). However, the correct a�ne
change can be found by using equation 5 iteratively in
a Newton-Raphson style minimization [16].

During tracking, the a�ne deformation D of the
feature window is likely to be small, since motion be-
tween adjacent frames must be small in the �rst place
for tracking to work at all. It is then safer to set D
to the zero matrix. In fact, attempting to determine
deformation parameters in this situation is not only
useless but can lead to poor displacement solutions:
in fact, the deformationD and the displacement d in-
teract through the 4�2 matrix V of equation (6), and
any error in D would cause errors in d. Consequently,
when the goal is to determine d, the smaller system

Zd = e (7)

should be solved, where e collects the last two entries
of the vector a of equation (5).

When monitoring features for dissimilarities in
their appearance between the �rst and the current
frame, on the other hand, the full a�ne motion system
(5) should be solved. In fact, motion is now too large
to be described well by the pure translation model.
Furthermore, in determining dissimilarity, the whole
transformation between the two windows is of inter-
est, and a precise displacement is less critical, so it
is acceptable for D and d to interact to some extent
through the matrix V .

In the next two sections we discuss these issues
in more detail: �rst we determine when system (7)
yields a good displacement measurement (section 4)
and then we see when equation (5) can be used reli-
ably to monitor a feature's quality (section 5).

4 Texturedness

Regardless of the method used for tracking, not all
parts of an image contain complete motion informa-
tion (the aperture problem): for instance, only the ver-
tical component of motion can be determined for a
horizontal intensity edge. To overcome this di�culty,
researchers have proposed to track corners, or win-
dows with a high spatial frequency content, or regions
where some mix of second-order derivatives is su�-
ciently high. However, there are two problems with

these \interest operators". First, they are often based
on a preconceived and arbitrary idea of what a good
window looks like. The resulting features may be in-
tuitive, but are not guaranteed to be the best for the
tracking algorithm to produce good results. Second,
\interest operators" have been usually de�ned for the
pure translation model of section 2, and the underly-
ing concept are hard to extend to a�ne motion.

In this paper, we propose a more principled de�ni-
tion of feature quality. With the proposed de�nition,
a good feature is one that can be tracked well, so that
the selection criterion is optimal by construction.

We can track a window from frame to frame if sys-
tem 7 represents good measurements, and if it can be
solved reliably. Consequently, the symmetric 2 � 2
matrix Z of the system must be both above the image
noise level and well-conditioned. The noise require-
ment implies that both eigenvalues of Z must be large,
while the conditioning requirement means that they
cannot di�er by several orders of magnitude. Two
small eigenvalues mean a roughly constant intensity
pro�le within a window. A large and a small eigen-
value correspond to a unidirectional texture pattern.
Two large eigenvalues can represent corners, salt-and-
pepper textures, or any other pattern that can be
tracked reliably.

In practice, when the smaller eigenvalue is su�-
ciently large to meet the noise criterion, the matrix Z
is usually also well conditioned. In fact, the intensity
variations in a window are bounded by the maximum
allowable pixel value, so that the greater eigenvalue
cannot be arbitrarily large. In conclusion, if the two
eigenvalues of Z are �1 and �2, we accept a window if

min(�1; �2) > � ; (8)

where � is a prede�ned threshold.
Similar considerations hold also when solving the

full a�ne motion system (5) for the deformation D

and displacement d. However, an essential di�erence
must be pointed out: deformations are used to deter-
mine whether the window in the �rst frame matches
that in the current frame well enough during feature
monitoring. Thus, the goal is not to determine defor-
mation per se. Consequently, it does not matter if one
component of deformation cannot be determined reli-
ably. In fact, this means that that component does not
a�ect the window substantially, and any value along
this component will do in the comparison. In prac-
tice, the system (5) can be solved by computing the
pseudo-inverse of T . Then, whenever some component
is undetermined, the minimum norm solution is com-
puted, that is, the solution with a zero deformation
along the undetermined component(s).



5 Dissimilarity

A feature with a high texture content, as de�ned
in the previous section, can still be a bad feature to
track. For instance, in an image of a tree, a horizontal
twig in the foreground can intersect a vertical twig in
the background. This intersection occurs only in the
image, not in the world, since the two twigs are at dif-
ferent depths. Any selection criterion would pick the
intersection as a good feature to track, and yet there is
no real world feature there to speak of. The measure
of dissimilarity de�ned in equation (3) can often in-
dicate that something is going wrong. Because of the
potentially large number of frames through which a
given feature can be tracked, the dissimilaritymeasure
would not work well with a pure translation model. To
illustrate this, consider �gure 1, which shows three out
of 21 frame details from Woody Allen's movie, Man-

hattan. The top row of �gure 2 shows the results of
tracking the tra�c sign in this sequence.

Figure 1: Three frame details from Woody Allen's
Manhattan. The details are from the 1st, 11th, and
21st frames of a subsequence from the movie.

Figure 2: The tra�c sign windows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).

While the inter-frame changes are small enough for
the pure translation tracker to work, the cumulative
changes over 25 frames are rather large. In fact, the
size of the sign increases by about 15 percent, and the
dissimilaritymeasure (3) increases rather quickly with
the frame number, as shown by the dashed and crossed
line of �gure 3. The solid and crossed line in the same
�gure shows the dissimilaritymeasure when also defor-
mations are accounted for, that is, if the entire system
(5) is solved for z. This new measure of dissimilarity
remains small and roughly constant. The bottom row
of �gure 2 shows the same windows as in the top row,
but warped by the computed deformations. The de-

formations make the �ve windows virtually equal to
each other.
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Figure 3: Pure translation (dashed) and a�ne motion
(solid) dissimilaritymeasures for the window sequence
of �gure 1 (plusses) and 4 (circles).

Figure 4: Three more frame details from Manhattan.
The feature tracked is the bright window on the back-
ground, on the right of the tra�c sign.

Figure 5: The bright window from �gure 4 is occluded
by the tra�c sign in the middle frame (top). The bot-
tom row shows the e�ects of warping by the computed
deformation matrices.

The two circled curves in �gure 3 refer to another
feature from the same sequence, shown in �gure 4.
The top row of �gure 5 shows the feature window
through �ve frames. In the middle frame the traf-
�c sign begins to occlude the original feature. The
circled curves in �gure 3 are the dissimilarity mea-
sures under a�ne motion (solid) and pure translation
(dashed). The sharp jump in the a�ne motion curve
around frame 4 indicates the occlusion. The bottom
row of �gure 5 shows that the deformation computa-
tion attempts to deform the tra�c sign into a window.



6 Convergence

The simulations in this section show that when the
a�ne motion model is correct our iterative tracking
algorithm converges even when the starting point is
far removed from the true solution. The �rst series of
simulations are run on the four circular blobs shown
in the leftmost column of �gure 6. The three mo-
tions of table 1 are considered. To see their e�ects,
compare the �rst and last column of �gure 6. The im-
ages in the last column are the images warped, trans-
lated, and corrupted with randomGaussian noise with
a standard deviation equal to 16 percent of the maxi-
mum image intensity. The images in the intermediate
columns are the results of the deformations and trans-
lations to which the tracking algorithm subjects the
images in the leftmost column after 4, 8, and 19 it-
erations, respectively. The algorithm works correctly,
and makes the images in the fourth column of �gure
6 as similar as possible to those in the �fth column.

Figure 6: Original image (leftmost column) and
warped, translated and noisy versions (rightmost col-
umn) for three di�erent a�ne changes. The interme-
diate columns are the deformations computed by the
tracker after 4,8,and 19 iterations.

Figure 7 plots the dissimilarity measure (as a frac-
tion of the maximum image intensity), translation er-
ror (in pixels), and deformation error (Frobenius norm
of the residual deformationmatrix) as a function of the
frame number (�rst three columns), as well as the in-
termediate displacements and deformations (last two
columns). Deformations are represented in the �fth
column of �gure 7 by two vectors each, correspond-
ing to the two columns of the transformation matrix
A = 1 +D. Table 1 shows the �nal numerical values.

Figure 8 shows a similar experiment with a more
complex image (from Matlab). Finally, �gure 9
shows an attempt to match two completely di�erent
images: four blobs and a cross. The algorithm tries to
do its best by aligning the blobs with the cross, but
the dissimilarity (left plot at the bottom of �gure 9)
remains high throughout.
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Figure 7: Dissimilarity (1st column), displacement er-
ror (2nd), and deformation error (3rd) versus iteration
number for �gure 6. The last two columns are dis-
placements and deformations computed during track-
ing, starting from zero. See text for units.

True Computed
Deformation Deformation

1

�
1:409 �0:342

0:342 0:563

� �
1:393 �0:334

0:338 0:569

�

2

�
0:658 �0:342

0:342 0:658

� �
0:670 �0:343

0:319 0:660

�

3

�
0:809 0:253

0:342 1:232

� �
0:802 0:235

0:351 1:227

�

True Computed
Translation Translation

1

�
3

0

� �
3:0785

�0:0007

�

2

�
2

0

� �
2:0920

0:0155

�

3

�
3

0

� �
3:0591

0:0342

�

Table 1: True and computed a�ne changes (in pixels)
for the simulations of �gure 6.
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Figure 8: The penny at the top left is warped until it
matches the transformed and noise-corrupted image
at the top right. The bottom plots are as in �gure 7.
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Figure 9: The blobs at the top left are warped as
shown until they are as close as possible to the cross in
the rightmost column. The bottom row shows dissim-
ilarity, translation, and deformation versus iteration
number.

7 Monitoring Features

This section presents some experiments with real
images and shows how features can be monitored dur-
ing tracking to detect potentially bad features. Figure
10 shows the �rst frame of a 26-frame sequence. A
Pulnix camera equipped with a 16mm lens moves for-
ward 2mm per frame. Because of the forward motion,
features loom larger from frame to frame. The pure
translation model is su�cient for inter-frame track-
ing but not to monitor features, as discussed below.
Figure 11 displays the 102 features selected accord-
ing to the criterion introduced in section 4. To limit
the number of features and to use each portion of the
image at most once, the constraint was imposed that
no two feature windows can overlap in the �rst frame.
Figure 12 shows the dissimilarity of each feature under
the pure translation motion model, that is, with the
deformation matrixD set to zero for all features. This
dissimilarity is nearly useless for feature monitoring:
except for features 58 and 89, all features have compa-
rable dissimilarities, and no clean discrimination can
be drawn between good and bad features.

From �gure 13 we see that features 58 is at the
boundary of the block with a letter U visible in the
lower right-hand side of the �gure. The feature win-
dow straddles the vertical dark edge of the block in the
foreground as well as parts of the letters Cra in the
word \Crayola" in the background. Six frames of this
window are visible in the third row of �gure 14. As the
camera moves forward, the pure translation tracking
stays on top of approximately the same part of the im-
age. However, the gap between the vertical edge in the
foreground and the letters in the background widens,
and it becomes harder to warp the current window
into the window in the �rst frame, thereby leading

Figure 10: The �rst frame of a 26 frame sequence
taken with a forward moving camera.

Figure 11: The features selected according to the tex-
turedness criterion of section 4.
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Figure 12: Pure translation dissimilarity for the fea-
tures in �gure 11. This dissimilarity is nearly useless
for feature discrimination.



to the rising dissimilarity. The changes in feature 89
are seen even more easily. This feature is between
the edge of the book in the background and a lamp
partially visible behind it in the top right corner of
�gure 13. As the camera moves forward, the shape of
the glossy re
ection on the lamp shade changes as it
becomes occluded (see the last row of �gure 14).

89

58

78

60 24
34

21

53 30

1

Figure 13: Labels of some of the features in �gure 11.
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Figure 14: Six sample features through six sample
frames.

Although these bad features would be detected be-
cause of their high dissimilarity, many other bad fea-
tures would pass unnoticed. For instance, feature 3 in
the lower right of �gure 13 is a�ected by a substan-
tial disocclusion of the lettering on the Crayola box by
the U block as the camera moves forward, as well as a
slight disocclusion by the \3M" box on the right (see
the top row of �gure 14). Yet with a pure translation
model the dissimilarity of feature 3 is not substan-
tially di�erent from that of all the other features in

�gure 12. In fact, the looming caused by the camera's
forward motion dominates, and re
ects in the overall
upward trend of the majority of curves in �gure 12.
Similar considerations hold, for instance, for features
78 (a disocclusion), 24 (an occlusion), and 4 (a disoc-
clusion) labeled in �gure 13.

Now compare the pure translation dissimilarity of
�gure 12 with the a�ne motion dissimilarity of �gure
15. The thick stripe of curves at the bottom represents
all good features, including features 1,21,30,53, labeled
in �gure 13. These four features are all good, being
immune from occlusions or glossy re
ections: 1 and
21 are lettering on the \Crayola" box (the second row
of �gure 14 shows feature 21 as an example), while
features 30 and 53 are details of the large title on the
book in the background (upper left in �gure 13). The
bad features 3,4,58,78,89, on the other hand, stand
out very clearly in �gure 15: discrimination is now
possible.
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Figure 15: A�ne motion dissimilarity for the features
in �gure 11. Notice the good discrimination between
good and bad features. Dashed plots indicate aliasing
(see text).

Features 24 and 60 deserve a special discussion, and
are plotted with dashed lines in �gure 15. These two
features are lettering detail on the rubber cement bot-
tle in the lower center of �gure 13. The fourth row of
�gure 14 shows feature 60 as an example. Although
feature 24 su�ers an additional slight occlusion as the
camera moves forward, these two features stand out
from the very beginning, and their dissimilarity curves
are very erratic throughout the sequence. This is be-
cause of aliasing: from the fourth row of �gure 14,
we see that feature 60 (and similarly feature 24) con-
tains very small lettering, of size comparable to the



image's pixel size (the feature window is 25� 25 pix-
els). The matching between one frame and the next is
haphazard, because the characters in the lettering are
badly aliased. This behavior is not a problem: erratic
dissimilarities indicate trouble, and the corresponding
features ought to be abandoned.

8 Conclusion

In this paper, we have proposed a method for fea-
ture selection, a tracking algorithm based on a model
of a�ne image changes, and a technique for moni-
toring features during tracking. Selection speci�cally
maximizes the quality of tracking, and is therefore op-
timal by construction, as opposed to more ad hoc mea-
sures of texturedness. Monitoring is computationally
inexpensive and sound, and helps discriminating be-
tween good and bad features based on a measure of
dissimilarity that uses a�ne motion as the underlying
image change model.

Of course, monitoring feature dissimilarity does not
solve all the problems of tracking. In some situations,
a bright spot on a glossy surface is a bad (that is,
nonrigid) feature, but may change little over a long
sequence: dissimilarity may not detect the problem.
However, even in principle, not everything can be de-
cided locally. Rigidity is not a local feature, so a local
method cannot be expected to always detect its viola-
tion. On the other hand, many problems can indeed
be discovered locally and these are the target of the
investigation in this paper. Our experiments and sim-
ulations show that monitoring is indeed e�ective in
realistic circumstances. A good discrimination at the
beginning of the processing chain can reduce the re-
maining bad features to a few outliers, rather than
leaving them an overwhelming majority. Outlier de-
tection techniques at higher levels in the processing
chain are then more likely to succeed.
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