
An Exploration of the SIFT Operator

Module number: P00999

Supervisor: Prof. Philip H. S. Torr

Course code: CM79

Jonathan Rihan

Student number: 04073838

September 1, 2005

Dissertation Plan:

An Exploration of the SIFT Operator

Jonathan Rihan

Supervisor: Professor Philip H. S. Torr

September 1, 2005

Abstract

The SIFT operator developed by David Lowe (Lowe 1999, Lowe 2004) is an algorithm

for object recognition in images.

This dissertation is an exploration of the SIFT operator, with the goal of identifying and

exploring areas of possible improvement. These might be either in performance character-

istics of the implementation of the algorithm or general improvements to the stability or

robustness of the algorithm in analysing different images and detecting objects.

First the algorithm will be implemented in C++ on a Windows operating system, then

once it has been successfully implemented, avenues of improvement will be identified and

explored. The areas will be indentified by experimentation and further research during the

course of the project.

1 Research

The SIFT algorithm was initially presented in a paper by David Lowe in 1999 (Lowe 1999) and

recently summarised (Lowe 2004). It has since been analysed by a number of people with the

goal of improving its performance and robustness.

The algorithm has been improved somewhat by Y. Ke and R. Sukthankar (Ke & Sukthankar

2003) by applying Principal Component Analysis instead of using smooth weighted histograms

as presented in the original implementation. This has the effect of making keypoints more robust

to changes in illumination and angle.

A SIFT implementation is available as MatLab source code, and this could possibly be used

to help develop the initial implementation of the algorithm and aid it’s migration to C++. This

code is available via Standford University’s project webpage for their computing module as part

of a SIFT project. While the SIFT operator was explored in the project presented by students

on that page (Gustavsson, Hui & Turitzin 2004), the focus of the project was changed to that

of using SIFT features to find planes in consecutive images part way through and improvements

to the SIFT algorithm were not developed.

i

Some areas of research that may yield improvements to the SIFT algorithm have been iden-

tified by my supervisor Professor Philip Torr. The first of these is that of possibly using kernel

density estimation (Duong 2001) instead of the histograms used in SIFT. The other area of in-

terest is researching whether or not filtering is necessary (Varma & Zisserman 2003) in the image

being analysed.

Other areas of improvement may be identified and explored as the project develops once the

algorithm has been implemented.

2 Objectives

• Implement SIFT in C++ on windows

• Identify and explore variations or improvements to the operator

3 Methods

Implement SIFT in C++ on windows

• Analyse the MatLab source code and references (Lowe 1999, Lowe 2004)

• Design program

• Implement design

• Test algorithm is implemented correctly by comparing to MatLab version, and redesign if

not. (requires digital camera for building object database)

• Explore real time performance (requires web camera)

• Research methods of analysing real time video stream with SIFT

• Implement real time analysis mode in program

• Look in to implementing PCA-SIFT (Ke & Sukthankar 2003)

Identify and explore variations or improvements to parts of the operator

• Research the use of kernels (Duong 2001) instead of histograms in SIFT

• Research the issue of whether or not filters are required (Varma & Zisserman 2003) for the

algorithm

• Research any other methods discovered during the project

ii

Write up dissertation

• Write report

• Proof read draft

4 Resources

• Web camera for exploring real time object recognition performances

• Digital camera for building databases of object images used to detect objects

5 Schedule

Figure 1: Gantt Chart for project plan

6 Marking Scheme

Evidence of research into the background to the topic: 20%

Analyitical content: 40%

Technical content: 40%

References

Duong, T. (2001), ‘An introduction to kernel density estimation’,
website: http://www.maths.uwa.edu.au/∼duongt/seminars/intro2kde/.

iii

Gustavsson, C., Hui, A. & Turitzin, M. (2004), ‘Improving SIFT features / finding planes in
hallways’, website: http://robots.stanford.edu/cs223b04/project9.html.

Ke, Y. & Sukthankar, R. (2003), PCA-SIFT: A more distinctive representation for local image
descriptors, Technical report IRP-TR-03-15, Intel.

Lowe, D. G. (1999), Object recognition from local scale-invariant features, in ‘International
Conference on Computer Vision’, Corfu, Greece, pp. 1150–1157.

Lowe, D. G. (2004), ‘Distinctive image features from scale-invariant keypoints’, International
Journal of Computer Vision 60(2), 91–110.

Varma, M. & Zisserman, A. (2003), Texture classification: Are filter banks necessary?, in ‘Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition’.

iv

Abstract

The field of computer vision applies numerous algorithms to solve the problems of object

recognition and classification. This dissertation explores two of these algorithms and presents a

new human pose data set of challenging human poses for use with human detection algorithms.

The first of the algorithms that this dissertation explores is the Scale Invariant Feature

Transform (or SIFT) first presented by Lowe (1999). This algorithm analyses an image across

Gaussian scale-space and creates descriptors at minima and maxima in the difference-of-Gaussian

function of two adjacent scale space images. This dissertation discusses a basic implementation

of the SIFT algorithm.

The second algorithm is based on descriptors very similar to those used in SIFT, but distrib-

utes them in a dense grid of overlapping descriptor blocks. These blocks are known as Histograms

of Oriented Gradients, or HOG (Dalal & Triggs 2005). There are two variants of this descriptor,

one circular and the other rectangular in shape called C-HOG and R-HOG respectively. This

dissertation tests out an implementation of the HOG algorithm by training with the database

used by Dalal & Triggs (2005) and a new pose database to compare the results.

Acknowledgements

Thanks go to Prof. Philip H. S. Torr for his guidance in the field of computer vision, and M.

Pawan Kumar from the Oxford Brookes University Vision Group for contribution of his original

Histogram of Oriented Gradients program to this project.

Thanks to Ann Harvey for her advice and feedback during the writing of this report. Thanks

also to Thomas El-Maraghi for creating the useful Matlab SIFT resource used as a reference

for the SIFT implementation in this dissertation.

The author also wishes to thank his family for their support while studying for the award of

MSc in Computing at Oxford Brookes University.

1

Contents

1 Introduction 8

1.1 Context . 8

1.2 Outline . 9

1.3 Objectives . 9

1.4 Resources . 10

2 Background Research 12

2.1 Image representation . 12

2.1.1 Image Format . 12

2.1.2 Coordinate Systems . 12

2.2 The SIFT Operator . 14

2.2.1 Scale-space Extrema Detection . 14

2.2.2 Keypoint Localisation . 17

2.2.3 Orientation Assignment . 18

2.2.4 Keypoint Descriptor . 19

2.3 Histogram of Oriented Gradients . 19

2.3.1 Technique . 20

2.3.2 Linear Support Vector Machines . 20

2.3.3 HOG Descriptors . 21

2.3.4 Training . 21

2.3.5 Comparisons . 22

2.3.6 Parameters . 22

3 SIFT Implementation 24

3.1 Introduction . 24

3.2 Design . 24

3.2.1 Convolution . 25

3.3 Structure . 25

3.3.1 SIFTImage . 26

3.3.2 SIFTPyramid . 27

2

3.3.3 Other Classes . 27

3.4 Program Results . 28

3.4.1 Extrema Detection Comparison . 28

3.4.2 Keypoint Matching . 29

3.5 Discussion . 30

4 Pose Database 32

4.1 Curious Labs’ Poser . 32

4.1.1 PoserPython . 33

4.2 Method . 33

4.2.1 Range of Movement . 33

4.2.2 PoseLib . 34

4.2.3 Pose Creation . 35

4.2.4 Preparing the database . 37

4.2.5 The superimpose program . 37

5 HOG Implementation 40

5.1 Descriptors . 40

5.1.1 R-HOG Implementation . 41

5.1.2 C-HOG Implementation . 42

5.2 Training . 43

5.3 Training program . 43

5.4 Test program . 44

5.5 Multi-scale Classifier . 45

5.5.1 Optimisation . 46

5.5.2 Structure . 47

5.5.3 The RenderMD Program . 48

5.6 Results . 49

5.6.1 INRIA Classifier . 49

5.6.2 Poser Database Performance . 49

5.6.3 Multi-scale Detection Results . 50

5.7 Discussion . 51

5.7.1 Descriptor Performance . 51

5.7.2 Poser Database Trained Classifier . 51

6 Conclusion 52

6.1 Future Work . 53

A Classification Results 54

A.1 INRIA Database Classifier Results . 55

A.2 Poser Database Classifier Results . 58

3

B SIFT Program Source 61

C Test and Train Program Source 151

C.1 Train Program . 151

C.2 Test Program . 158

C.3 Shared Source Code . 163

D ScaleClassify Program Source 181

E RenderMD Program Source 221

F PoseLib Source code 244

G Superimpose Program Source 262

4

List of Tables

3.1 Pseudo-code of the SIFT keypoint descriptor program. 26

4.1 Pseudo-code for the superimpose program. 38

5.1 Pseudo-code for the HOG SVM training programs. 44

5.2 Pseudo-code for the multi scale HOG classifier program. 45

5.3 Estimates of recall and precision for INRIA and Poser classifiers 49

5

List of Figures

1.1 MatLab SIFT and David Lowe’s SIFT program comparison 10

2.1 Row-column coordinate system for images. 13

2.2 x-y coordinate system for images. 13

2.3 A one-dimensional signal smoothed by Gaussian kernels of increasing width (from

Witkin 1983). 15

2.4 Gaussian scale-space image pyramid . 16

2.5 Difference of Gaussian pyramid construction . 16

2.6 4x4 SIFT descriptor . 19

2.7 HOG window construction . 20

2.8 R-HOG and C-HOG descriptor . 21

3.1 Extrema detection comparison . 28

3.2 Curvature ratio filtering results . 29

3.3 Keypoints found in a test image. 29

3.4 Keypoints found in a rotated version of the test image. 30

3.5 Results showing keypoint matches between both test images. 31

4.1 Range of movement for pose database . 33

4.2 Base poses from Poser 5 . 34

4.3 PoseLib modules . 34

4.4 Poser 5 render samples . 36

4.5 Database preparation samples . 37

4.6 Resampled pose image . 39

5.1 Descriptor performances on the INRIA database 49

5.2 Sample frames from INRIA trained video classification 50

A.1 Results of INRIA trained multi-scale classification using on test image 1. 55

A.2 Results of INRIA trained multi-scale classification using on test image 2. 56

A.3 Results of INRIA trained multi-scale classification using on test image 3. 56

6

A.4 Results of INRIA trained multi-scale classification using on test image 4. 57

A.5 Results of INRIA trained multi-scale classification using on test image 5. 57

A.6 Results of Poser trained multi-scale classification using on test image 1. 58

A.7 Results of Poser trained multi-scale classification using on test image 2. 59

A.8 Results of Poser trained multi-scale classification using on test image 3. 59

A.9 Results of Poser trained multi-scale classification using on test image 4. 60

A.10 Results of Poser trained multi-scale classification using on test image 5. 60

7

Chapter 1

Introduction

1.1 Context

The field of computer vision employs numerous algorithms to extract interest features from

images that can be used for applications such as object recognition. These algorithms try to

search for features that are relatively invariant to changes in orientation and lighting conditions,

so that the algorithms can find the same features in other images with different backgrounds or

points of view.

The first algorithm that this dissertation is concerned with is called the SIFT operator (Scale

Invariant Feature Transform), which has been developed by David Lowe. It was initially pre-

sented to the computer vision community in a paper a few years ago (Lowe 1999) and more

recently with some improvements to the algorithm (Lowe 2004).

Features detected by this algorithm are invariant to small affine image transforms and small

changes in lighting, so are quite robust compared to some of the other algorithms used to detect

features for object recognition (Ke & Sukthankar 2003).

These features are used in object recognition to match features detected in a sample image to

a large database of features extracted from various objects at different viewpoints. A match can

be found by finding the most number of matches between keypoints that agree on an object’s

pose.

The SIFT algorithm analyses an image across scale-space (see Witkin 1983, Koenderink 1984)

by creating an image pyramid with successive Gaussian blur filters, and then calculating the

difference-of-Gaussian between two levels of the image scale space pyramid. It then finds maxima

and minima across 3 adjacent difference-of-Gaussian levels to find potential keypoint locations.

These keypoint locations are assessed for stability and descriptors are created at each of the

stable locations. The descriptors represent the local image data around a keypoint in a way that

is invariant to changes in scale, rotation, and small variations in illumination. This process is

discussed in more detail in section 2.2.

8

The second algorithm that is explored in this dissertation uses descriptors very similar to those

used by the SIFT algorithm. These descriptors are called Histograms of Oriented Gradients or

HOG (Dalal & Triggs 2005), and are arranged within a window in a densely populated grid of

overlapping descriptor blocks.

The HOG descriptor blocks are made up of a number of oriented histogram cells, and are

arranged in one of two main configurations; square cells in a rectangular shaped descriptor called

R-HOG, and angular cells arranged in a circular descriptor called C-HOG.

The histograms of each block from the window are combined together to form a HOG feature

vector that is processed by a linear Support Vector Machine to classify the sample area within

the HOG window. The SVM is trained using positive and negative examples from a training

data set. Section 2.3 discusses this algorithm in more detail.

1.2 Outline

The aim of this project is to implement the SIFT algorithm using C++, and then explore possible

improvements to it’s performance or robustness.

The SIFT implementation discussed in Chapter 3 is implemented as a descriptor generator,

and is not extended for use in real time object recognition applications as discussed in the original

dissertation plan. The performance of the implementation was not sufficient enough to support

a real-time detection scheme.

During the course of the dissertation a paper was published that presents an algorithm which

uses feature descriptors very similar in construction to that of those used by the SIFT algorithm.

This algorithm calls the class of descriptor it uses Histograms of Oriented Gradients (or HOG)

(Dalal & Triggs 2005). It is shown to outperform the PCA-SIFT based descriptors presented by

Ke & Sukthankar (2003), which were demonstrated to be more robust than the original SIFT

descriptors.

Since the second phase of the project is to explore possible improvements to SIFT, the second

phase focuses on exploring the performance of the new HOG based algorithm. Comparisons are

made over the INRIA Comparisons presented in Dalal & Triggs (2005) and a new person database

with more varied lighting conditions and poses. This new database is presented and discussed

by this report in chapter 4.

1.3 Objectives

The first stage of the project is to implement Lowe’s (2004) SIFT algorithm in C++. Once this

is complete, comparisons between Lowe’s (2004) demo program and the implementation will be

made to assess correctness.

Once that has been completed, the next stage is to compare the performance of the PCA-

SIFT descriptor to that of the HOG in the algorithm presented by Dalal & Triggs (2005). This

9

can be broken down in to a smaller set of goals.

• Generate a database of human poses using Poser

• Train both descriptors with the Poser and INRIA databases

• Compare results of classifying new images between descriptors trained with each database

To generate the human pose database, a software package called Poser will be used. This

program is scriptable using a Python based language, so the final poses in the database will be

automatically generated via script.

Training involves taking this database and training the two descriptors ready for classification.

They will then be ready to classify new images that do not exist in the training data. The results

of how well the descriptors performed in classifying new images will then be presented.

1.4 Resources

After the initial dissertation plan was submitted, another more accurate Matlab resource (El-

Maraghi 2004) than the one originally presented in the plan (Gustavsson, Hui & Turitzin 2004)

was discovered. This second MatLab implementation more closely matches the results of David

Lowe’s own binary implementation of his algorithm, and better represents the algorithm de-

scribed in the most recent SIFT paper (Lowe 2004).

In light of this, the new MatLab resource will be used as a reference to implementing the

algorithm in C++ instead of the one originally specified in the dissertation plan.

Figure 1.1: Comparison showing the MatLab keypoint locations (left) and the keypoint locations
found by David Lowe’s program (right). The keypoints on the right were plotted on top of the
original image by using the locations in the keypoint file generated by the program.

Figure 1.1 shows the keypoint locations detected by the MatLab program in the left image,

and on the right shows the location of keypoints found using David Lowe’s keypoint demo

program that was published along with his most recent SIFT paper (Lowe 2004). The figure

shows that although the MatLab keypoint locations differ slightly from the keypoint locations

found using David Lowe’s program, their general positions are very similar.

10

The C++ implementation of the SIFT algorithm for this dissertation will attempt to be as

close to the results of David Lowe’s implementation as possible, so that there is a solid foundation

to compare the effects of changes and improvements to the algorithm.

Source code for David Lowe’s keypoint detection demo program is not publically available,

so an exact reproduction of his implementation will not be possible. However, a reasonably close

implementation should be able to be achieved using the MatLab source code and the two SIFT

papers as reference material.

11

Chapter 2

Background Research

2.1 Image representation

2.1.1 Image Format

Pixels in the images processed in this report are all converted to a floating point grey level

format in the range [0, 1]. All greyscale pixel values are assumed to be in this format and range

throughout this report.

The original images processed however can be in various formats. Some images are greyscale,

and others are full colour images with red, green and blue components. The images that are

originally in colour are converted to their greyscale equivalent using the formula for calculating

the Luminance component Y of the YIQ colour model (Hearn & Baker 2004), which creates a

good greyscale representation of the image 1.

Y = 0.299 R + 0.587 G + 0.114 B (2.1)

2.1.2 Coordinate Systems

The coordinate system for image processing in this report is constructed from interpreting the

image as a matrix with the horizontal axis as the columns of the matrix, and the vertical axis as

the rows of the matrix. Pixels in this coordinate system will be referred to as either (row, column)

or in an abbreviated from (r, c).

One representation of image coordinate systems in computer graphics is to consider the

horizontal axis as the x axis with the positive direction to the right, and the vertical axis as the

1The perception of ‘correctness’ seems to depend greatly on the use of colour in the source image. For instance

an image with a large area of blue sky converted to greyscale using these coefficients will seem slightly dark, so

there is no definitive simple transform to create greyscale levels that works for all images. However, this method

is quite commonly used for creating greyscale representations of colour images and is used for image conversions

in this report.

12

-

?row

column

0

1

2

3

4

.

.

.

0 1 2 3 4 · · ·

Figure 2.1: Row-column coordinate system for images.

-

?

x

y

0

1

2

3

4

.

.

.

0 1 2 3 4 · · ·

Figure 2.2: x-y coordinate system for images.

y axis with the positive direction downward. Most modern computer graphics libraries such as

OpenGL R© and DirectX R© use this coordinate system representation.

This is similar to the system usually used for image processing mentioned above, as the

vertical axis increases downward. The result of this is that given a linear buffer of memory, the

offset to a given pixel at (x, y)T is found by evaluating the following C-style pseudo code:

pixel = buffer [(y ∗ width) + x]

Where width is the width of the image in pixels. The same pixel specified in (row, column)

format would be indexed as:

pixel = buffer [(row ∗ width) + column]

Therefore to convert from a pixel coordinate specified in (row, column) form to (x, y) form,

it’s a simple case of mapping the row to y and column to x, and vice versa to convert the other

way.

In this report, when speaking in terms of (x, y) coordinates the coordinate system in figure

2.2 is being used, and for (row, column) (or (r, c) in abbreviated form) the coordinate system in

figure 2.1 is being used. However, on the whole (x, y) coordinates will be used when referring to

image space locations.

13

It should be noted however, that Lowe’s (2004) demo program appears to interpret images

with the x-axis as vertical increasing downward, and the y-axis as horizontal increasing to the

right. This is the transpose of the coordinate system used in this report.

2.2 The SIFT Operator

The Scale Invariant Feature Transform was developed by David Lowe (Lowe 1999, Lowe 2004) to

find stable image features that can be used for object recognition. These features are invariant

to rotation and scaling, as well as being relatively tolerant of small changes in illumination.

This kind of invariance means that these same features are also likely to be detected in images

where the object has been rotated or is viewed from a slightly different perspective or distance.

There are four stages to the SIFT algorithm (Lowe 2004).

• Scale-space extrema detection

• Keypoint localization

• Orientation assignment

• Keypoint descriptor

2.2.1 Scale-space Extrema Detection

Scale-space Theory

Before this stage is discussed in any detail, a quick review of scale-space theory should be made.

Scale-space analysis is where a source signal I is convoluted with a variable scale Gaussian

filter G(σ) to project the signal in to what’s known as scale-space. Varying the scale parameter

σ moves the signal through scale space. Increasing σ has the effect of filtering out higher spatial

frequencies in the signal so that only the lower spatial frequencies remain.

One of the immediate advantages of this is that low levels of noise are averaged out quite

quickly as the scale parameter σ increases, so information in the remaining signal data can be

analysed independently from small amounts of noise.

Scale-space theory has become popular since the works of Witkin (1983) and Koenderink

(1984). However, research in scale-space theory was being done as early as 1959 by Taizo Iijima

in a paper published in Japan in 1959 (Iijima 1959) and in following works, as discussed by

Weickert, Ishikawa & Imiya (1999). This was independent of the work being done in the US and

Europe later on.

Witkin (1983) discussed scale-space representation in a 1-dimensional case, but the principle

holds for 2-dimensional case also (Koenderink 1984). Shown in figure 2.3 is a one-dimensional

signal that has been smoothed by Gaussian kernels of increasing width (from Witkin 1983).

14

Figure 2.3: A one-dimensional signal smoothed by Gaussian kernels of increasing width (from
Witkin 1983).

Extrema Detection

In this initial stage of the algorithm, a source image I(x, y) is convoluted using a 2-dimensional

Gaussian function G(x, y, σ) to build an image pyramid. This creates a 3-dimensional represen-

tation with x and y representing the 2 image axis, and σ representing the scale axis of the image.

Increasing σ moves the image plane upward in scale-space, and the image becomes increasingly

more blurred as the higher spatial frequencies are filtered out.

The function G(x, y, σ) is defined as follows:

G(x, y, σ) =
1

2πσ2
· e−

(x2+y2)

2σ2 (2.2)

Convoluting the image I(x, y) with G(x, y, σ) creates the scale space representation L(x, y, σ)

of the image.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.3)

The SIFT algorithm uses extrema found in the difference-of-Gaussian function from the

convolved image pyramid that is computed from two adjacent scales in scale-space separated

by a constant factor k. It has been shown that finding the value of this function is a close

approximation to determining the scale-normalised Laplacian of Gaussian of the image (see

Lindeberg 1994).

The difference-of-Gaussian function D(x, y, σ) of the convoluted image L(x, y, σ) is the sub-

traction of two adjacent scales in the Gaussian scale-space pyramid separated by constant factor

k.

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (2.4)

To create the image pyramid, discrete intervals in scale-space are sampled by increasing the

15

6
σ

Octave 1 Octave 2

Figure 2.4: Two octaves of a Gaussian scale-space image pyramid with s = 2 intervals. The first
image in the second octave is created by down sampling the second to last image in the previous
octave by a factor of 2 (shown in green).

6
σ

6
?k

Octave 1 DoG Octave 1

Figure 2.5: The difference of two adjacent intervals in the Gaussian scale-space pyramid create
an interval in the difference-of-Gaussian pyramid (shown in green).

scale parameter σ by a constant amount.

In Lowe’s (2004) paper, the image is down sampled by a factor of 2 when the scale parameter

σ doubles so that an octave has half the previous octave’s dimensions. This provides a great

increase in processing speed with a negligible loss in accuracy.

Each of the octaves are split in to s intervals, and the factor k required to provide the correct

number of intervals over an octave can be calculated using 21/s. To search a complete octave for

extrema detection s+3 intervals are required per octave for s+2 difference-of-Gaussian intervals.

For instance, if s = 2 then the number of Gaussian pyramid intervals per octave that would

need to be created would be 2 + 3 = 5 to create 2 + 2 = 4 DoG intervals to search for extrema

cover a complete octave. Of these DoG intervals, only 2 levels will be checked against the level

above and below (for DoG intervals 1 and 4 there are no intervals to check below and above

respectively, so they are only used during the search over intervals 2 and 3).

Extrema are found in the DoG intervals by comparing a sample to it’s 8 neighbours on the

16

same level, 9 in the interval above and 9 in the interval below. If and only if the sample is either

greater than or less than all of its 28 neighbours then it is considered as a potential keypoint.

2.2.2 Keypoint Localisation

Once all potential keypoint candidates have been identified, the keypoints need to be checked

for stability.

The first test that needs to be made is that of contrast. If the value of D(x, y, σ) at the

keypoint location is less than a contrast threshold constant, then it is discarded as unstable and

susceptible to low levels of noise. A value of |D(x, y, σ)| less than 0.03 is used to filter out low

contrast keypoints in Lowe’s (2004) paper.

The most recent SIFT paper proposes a method of interpolating a keypoint by fitting a 3D

parabola to the nearby sample data. If the calculated offset from the sample point is greater

than 0.5 in any dimension, then the keypoint is moved to that position instead. Lowe (2004)

proposes that this improves the stability of the keypoints found in the image.

The interpolated position is found by solving the following equation to find the offset:

x̂ = −δ2D

δx2

−1
δD

δx
(2.5)

Where x̂ is the offset vector from the sample point, and D and its derivatives are evaluated

using local pixel differences around the sample point.

Lowe (2004) proposes that the function value at this final offset location D(x̂) is useful for

rejecting unstable points with low contrast. This value can be found by evaluating:

D(x̂) = D +
1

2

δD

δx

T

x̂ (2.6)

Next keypoints that are situated along edges need to be rejected as they are poorly defined

and are likely to be susceptible to small amounts of noise (Lowe 2004). Keypoints will have

a small curvature along and edge, and a large curvature across the edge. These points can be

rejected by finding the ratio of the principle curvatures at the sample point and rejecting ratios

that are too large.

These principle curvatures can be found by calculating the Hessian matrix H at the keypoint

location, using differences of neighbouring pixel samples to find the derivatives. Note that the

matrix is symmetric so Dxy = Dyx.

H =

[

Dxx Dxy

Dxy Dyy

]

(2.7)

The ratio of the principle curvatures can be found by calculating the trace Tr(H) and deter-

minant Det(H) of the Hessian matrix:

17

Tr(H) = Dxx + Dyy

Det(H) = DxxDyy − D2
xy

(2.8)

Then the following equation is evaluated to find the ratio of principle curvatures and check

that it is below a desired threshold value r (Lowe 2004).

Tr(H)2

Det(H)
<

(r + 1)2

r
(2.9)

Keypoints that have a curvature threshold less than r are rejected, as well as points that have

a negative value for Det(H). Keypoints with ratios greater than r = 10 were rejected in Lowe

(2004).

2.2.3 Orientation Assignment

Once unstable keypoints have been discarded, orientations need to be assigned to each of the

remaining keypoints so that local pixel data can be described relative to the orientation of a

keypoint for rotational invariance.

The image gradient orientations and magnitudes of all the sample pixels on the same level as

the keypoint that are within a Gaussian window of 1.5 times the scale of the keypoint are used

to calculate a histogram. The histogram consists of 36 bins (one for each 10◦ step). Each sample

contributes to the appropriate bin by its magnitude weighted by the Gaussian window.

For efficiency the orientations and magnitudes of the pixel data are precalculated during the

creation of the image pyramid.

Let the finite central differences across x and y at pixel location (x, y)T be δx(x, y) and δy(x, y)

respectively, then:

δx(x, y) = L(x + 1, y) − L(x − 1, y)

δy(x, y) = L(x, y + 1) − L(x, y − 1)
(2.10)

The magnitude m(x, y) at a sample pixel location can be found by evaluating the following

equation:

m(x, y) =
√

δx(x, y)2 + δy(x, y)2 (2.11)

The orientation θ(x, y) of the gradient is relative to the image space x axis, and can be

determined as follows:

θ(x, y) = tan−1

(

δy(x, y)

δx(x, y)

)

(2.12)

Once the histogram has been calculated, keypoints are created for each orientation that has a

value of 80% of the maximum histogram value or more. Lowe (2004) states that this contributes

18

significantly to stability of matching. For each of these peak orientations, a parabola is fit to the

values of the 3 nearest bins to interpolate the orientation for better accuracy.

2.2.4 Keypoint Descriptor

Once all keypoint locations have been determined and have orientations assigned to them, the

next stage is to create a descriptor to represent the image data around the keypoint in an invariant

form.

Keypoint descriptors as used in Lowe (2004) are composed of a 4x4 grid of histograms formed

from 4x4 pixel subregions from a larger 16x16 sample array. Histograms consist of 8 bins, one for

each 45◦ step. The magnitudes of each of the sample points are weighted by a Gaussian window

of width of half the keypoint’s scale. To avoid boundary effects, a sample contributes to more

than one bin in the histogram weighted by a factor of 1 − d where d is distance in histogram

step units from a bin orientation. A sample also contributes to bins in adjacent histograms in

the descriptor, again weighted by 1− d where d is distance in descriptor histogram spacing units

(4 for a 16x16 sample block).

Figure 2.6: The layout 4x4 histogram bin SIFT descriptor. The descriptor covers a 16x16 pixel
sample area, and each histogram cell in covers a 4x4 subregion within the 16x16 sample area. A
sample gradient influences more than one bin using bilinear interpolation across cell spacing and
across histogram bin spacing.

2.3 Histogram of Oriented Gradients

The 4x4 normalised gradient descriptors used in stage 4 of the SIFT algorithm are very similar

in construction to a class of descriptors in an algorithm presented recently called Histogram

of Oriented Gradients by Dalal & Triggs (2005). The algorithm has been shown to perform

very well when applied to person detection, and outperforms the PCA based descriptors used in

PCA-SIFT (Ke & Sukthankar 2003).

This section gives a brief overview of the operation of the HOG algorithm.

19

2.3.1 Technique

The principle behind the Histogram of Oriented Gradients (HOG) approach is quite simple.

Whereas SIFT uses sparsely distributed descriptors positioned at extrema found in scale-space,

HOG uses a dense array of overlapping histograms across a sample window.

The sample window is made up of a grid of overlapping blocks (the HOG descriptors them-

selves) and each of these blocks is made up of a number of 1D orientation histograms. The

histograms within the descriptor are combined to form its representation, and the grid of de-

scriptors are combined to form a feature vector that is used in a conventional SVM.

Each of the HOG descriptor blocks is normalised based on the ‘energy’ of the histograms

contained within it. For example, a HOG vector v might be normalised using v/
√

‖v‖2
2 + ǫ2 or

a similar method. Dalal & Triggs (2005) discusses different methods of contrast normalisation,

and the one used in this dissertation for the HOG implementation is the L2-hys method.

Figure 2.7: Construction of the HOG window with the HOG descriptor blocks. Blocks are
created in order from the top left of the window moving to the right, then continue from the
start of the left edge of the window for next row of blocks.

2.3.2 Linear Support Vector Machines

The linear Support Vector Machine (or SVM) used by the HOG algorithm is a binary classifier

that when trained will classify a feature vector as either positive or negative using the equations

in 2.13.

wTx + b ≥ 0 for positive classification

wTx + b < 0 for negative classification
(2.13)

Where w and b are the weight vector and bias determined during the training process that

represent the decision hyperplane used to classify training examples, and x is the feature vector

to be classified. The decision hyperplane surface is described by equation 2.14.

20

wT x + b = 0 (2.14)

The training problem of a linear SVM is to maximise the distance between the training

examples from the decision hyperplane surface. This dissertation uses a program called SVM

Light (Joachims 1999) to train the linear SVM using a set of positive and negative feature vector

examples.

2.3.3 HOG Descriptors

There are two main types of HOG descriptor. These are a rectangular shaped R-HOG descriptor,

and a circular shaped C-HOG descriptor. The layout of these two descriptors is shown in figure

2.8.

Figure 2.8: The layout of the two main descriptors used in the HOG algorithm. A 2x2 cell
R-HOG descriptor is shown on the left, and a 5 cell C-HOG descriptor is shown on the right.

R-HOG

The R-HOG descriptor is a rectangular shaped grouping of histogram cells. Dalal & Triggs

(2005) explores different configurations of this descriptor, but 2x2 blocks of 8x8 cells seem to

give the best results on the INRIA database.

C-HOG

The R-HOG descriptor is a circular shaped group of histogram cells. The block is split in to

a number of radial cells, and those are further split in to a number of angular cells. Several

configurations were explored by Dalal & Triggs (2005) but a single central bin and 4 angular

radial bins with a total descriptor radius of 8 samples seem to perform best.

2.3.4 Training

The HOG classifier uses a linear SVM to classify images, and Dalal & Triggs (2005) uses SVM

Light (Joachims 1999) for training.

To train the SVM, HOG feature vectors are generated for a set of positive training images

and randomly sampled patches from a negative image set. Once trained, the negative images

are searched exhaustively in scale-space to find false positives to use as hard examples. These

21

hard examples are added to the initial positive and negative training set, and the SVM is trained

again using this augmented set. Dalal & Triggs (2005) states that this improves the classification

performance of the classifier.

In Dalal & Triggs’s (2005) paper the exhaustive search phase of the training uses an image

pyramid to search scale space. Each of the levels is separated by a factor of 1.2, and new levels

are created until either the width of the pyramid level reaches 64 or the height reaches 128.

The HOG windows are separated by a stride of 8 pixels at any level. To reduce the effects of

boundary conditions however, a window size of 96x160 is used for this report.

If there is a margin left over after fitting the HOG windows, the whole window grid is shifted

so that it is centred on the level. The formula used to calculate the offset to shift the window

grid for HOG window H and image I in the pyramid is:

x = ⌊(Iw − nxHw)/2⌋
y = ⌊(Ih − nyHh)/2⌋

(2.15)

Where Iw and Ih are the pyramid image width and height respectively, Hw and Hh are the

HOG window width and height plus the 8 pixel stride respectively, and nx and ny are the number

of HOG windows in the x and y directions with a window stride of 8 pixels.

In this report, the minimum pyramid level sizes for width and height are 90 and 160 respec-

tively. This is so that the size for negative training images doesn’t fall below the normalised

input image size and avoids boundary conditions.

2.3.5 Comparisons

There are a few variations of the HOG descriptor discussed in Dalal & Triggs (2005). The two

main categories are rectangular and circular HOG descriptors (R-HOG and C-HOG respectively),

and the paper explores their performance compared to SIFT descriptors (as discussed in section

2.2.4), Shape context descriptors (simulated using C-HOG descriptors) and generalised Haar

wavelet based descriptors.

Dalal & Triggs (2005) demonstrated that HOG based descriptors outperformed each of the

other descriptor variations on two different person databases: the MIT pedestrian database, and

a more challenging INRIA database created to test the HOG descriptor.

2.3.6 Parameters

The HOG implementation used in this dissertation is based on source code provided by M. Pawan

Kumar, a PhD student from the Oxford Brookes Vision Group.

The HOG feature vectors used in the implementation are made from a 64x128 sample window

consisting of a grid of overlapping 2x2 R-HOG descriptors of 8x8 sample histogram cells. The

HOG descriptors are overlapped using a stride of 4 pixels and each of the HOG descriptor blocks

22

is normalised using the L2-hys method. The 1D histograms have 9 bins over a 180 degree range

(the ‘sign’ of the gradient is ignored).

For the positive training set, the normalised input image set from the INRIA Person database

is used. In these images the human figure is surrounded by approximately 16 pixels within the

64x128 detection window, and to avoid boundary conditions the detection window is surrounded

by an additional 16 pixel border so that the final positive image size is 96x160. This normalisation

method is also used to create training images in the pose database discussed in section 4.

23

Chapter 3

SIFT Implementation

3.1 Introduction

The SIFT algorithm was implemented from the ground up using C++ and Visual Studio .net

2003. The two SIFT papers (Lowe 1999, Lowe 2004) were used as a reference for the structure

of the algorithm in addition to the MatLab resource identified (El-Maraghi 2004) in section 1.4.

The following sections describe the overall structure of the implementation and the reasons

behind the implementation decisions made.

3.2 Design

To keep the problem domain focused on implementing the algorithm and not that of user interface

design, the target application is a simple command line Win32 console application.

The program takes the name of the image to process and outputs several image files to show

it’s results, and a file containing the SIFT descriptors. The generated image files are of the

Gaussian scale-space pyramid, the DoG pyramid with extrema marked in yellow, and separate

copies of the original image: one to show detected extrema and another to show final keypoint

locations and their dominant orientations.

While the program is running, progress information is output to the console window. Each

stage of the SIFT algorithm that is being performed and how long it takes is displayed, in

addition to other useful information for debugging purposes. This profiling information is useful

in analysing the relative performance of the implementation when processing image files.

The preferred output image format of the program is that of PNG (Portable Network Graph-

ics). This is an open-source image format with good lossless PK-ZIP based compression, so is

ideal for outputting the somewhat large images generated by the program. The LibPNG library

(PNG Development Group 2005) is used by this program to load and save PNG images.

24

3.2.1 Convolution

The program supports two methods of convolution that can be used to create the Gaussian scale-

space pyramid. These two methods were implemented so that their effect on extrema detection

can be compared. The differences between these two methods are shown in section 3.4.

Gaussian Box Filter

The first of these is a simple Gaussian box filter method that adds the weighted local neighbour-

hood of each pixel to create the blurred image. This is implemented efficiently using two passes

of 1D Gaussian kernels in the x and y directions instead of applying a 2D kernel. This takes

advantage of the separability property of convolution, and speeds up the filtering significantly.

Another optimisation is that instead of using the first level of the image and convoluting

with different sized kernels for each level, each scale-space interval is created by convoluting the

interval before it using a smaller kernel. The required standard deviation δσi+1 to calculate

interval i + 1 from interval i with σi can be calculated using equation 3.1 (where k = 21/s).

δσi+1 = σi

√

k2 − 1 (3.1)

This optimisation also speeds up the convolution required to create the Gaussian scale-space

image by reducing the size of the kernels processed, and there for the number of calculations

required to create each interval.

FFT Based Convolution

An alternate method provided by the program is a slower but more accurate Fast Fourier Trans-

form based convolution. The program uses a library called ‘Fastest FFT in the West’ or FFTW

(Frigo & Johnson 2005), and provides a fast implementation of the FFT algorithm.

For the FFT convolution approach, since the FFT transform speed is approximately constant

regardless of kernel size the first interval in each octave is convoluted by different kernels to create

the other interval levels.

Both the Gaussian kernel and source image are transformed in to the frequency domain using

FFT, then they are multiplied together and the result is transformed back using the inverse FFT

transform.

3.3 Structure

The general structure of the program is shown in table 3.3.

There are two main classes used in the SIFT implementation. One is a general representation

of a floating point image, and the other is an encapsulation of the algorithms required by SIFT.

Since the Gaussian scale-space pyramid is the foundation of the SIFT algorithm, making this

the central part of the SIFT keypoint detector seemed a logical choice. The class consists of

25

SIFT program

(01) parse options

(02) load image

(03) resample image to double size

(04) for each octave

(05) create Gaussian blur intervals

(06) create difference-of-Gaussian intervals

(07) compute edges for each interval

(--) end for

(08) search each octave for stable extrema

(09) create keypoints at dominant orientations of extrema

(10) for each keypoint

(11) rotate sample grid to keypoint orientation

(12) sample region and create descriptor

(--) end for

(13) optionally save pyramid images

(14) save output images

(15) save descriptors

Table 3.1: Pseudo-code of the SIFT keypoint descriptor program.

several smaller data structures that manage the scale-space and difference-of-Gaussian represen-

tations in memory, as well as the precalculated image pixel gradients and magnitudes used by

the algorithm.

The image class is a general purpose representation of a floating point image and has several

image manipulation routines associated with it for use by the SIFT algorithm. It supports

loading and saving different types of image formats, and converts RGB colour images in to their

greyscale representations using the method described in section 2.1.1 using equation 2.1.

Both of these classes have a COM (Component Object Model) style interface to them, so that

their lifetime is governed by reference counting. Auto-reference-counting structures are used to

safely manage these classes during program operation. The reasoning behind this design choice

was that by moving the memory management responsibility to the classes themselves, it would

make memory management simpler to handle should the SIFT implementation code be used to

create a general purpose library in the future.

3.3.1 SIFTImage

This class is responsible for providing an interface to a floating point image. Images can be

loaded from file in to memory using this class, or the image can be given a pointer to image data

already in memory (e.g. memory in a large buffer).

26

The ability to manipulate images indirectly allows the application to allocate a fixed size

buffer for image manipulation routines and re-use it for consecutive image operations. This

avoids having to re-allocate memory every time operations need to be performed.

In addition to loading an image from file or indirectly via memory pointer, the class can also

make a copy of an image from a location elsewhere in memory. This is useful when displaying

the results of the program on top of the original image, while leaving the source image intact.

3.3.2 SIFTPyramid

The SIFTPyramid class encapsulates and manages all the data structures required by the SIFT

algorithm. Gaussian scale-space and DoG pyramid representations as well as the image pixel

gradient and magnitudes for each pyramid level are managed by this class.

The image pyramid data is grouped in to octave data structures. Each octave contains a set

of scale-space intervals, DoG intervals, and image pixel gradient information.

The memory for the all the octaves and intervals in the scale-space pyramid are allocated in

a single pixel buffer, and SIFTImage objects are created to point to a specific area of memory

within the buffer using the SIFTImage indirect referencing method. A second pixel buffer for

the difference-of-Gaussian pyramid is also created and SIFTImages are used in indirect mode to

provide an interface to the image data.

Gradient information for the scale-space pixel data across all octaves and intervals is stored

in a buffer and indirectly referenced via a simple data structure within the data structure for

each octave.

When an image is passed to the SIFTPyramid class for processing, the pyramid structures are

resized if necessary to accommodate the image size and desired number of octaves and intervals.

Once this has been done, the scale-space pyramid, DoG pyramid and scale-space pyramid pixel

gradients are created using the source image.

Once the pyramid has been generated, SIFTPyramid can be used to find extrema, keypoints

and create SIFT descriptors.

3.3.3 Other Classes

In addition to SIFTImage and SIFTPyramid, there are several modules that contain code for

calculating image convolution and some general purpose mathematical and graphics related rou-

tines. These are used by the two main classes to create results and calculate the pyramid for the

source image.

27

3.4 Program Results

3.4.1 Extrema Detection Comparison

To study the results of the extrema detection stage of the algorithm, an image was analysed

using both the FFT and box filter methods then the extrema were compared to extrema found

by the keypoint detector from Lowe (2004).

The results of extrema detection on the same image region from the keypoint program and

the two convolution methods used by this SIFT implementation is shown in figure 3.1.

Figure 3.1: White circles mark extrema that are within a few pixels of extrema found by the
keypoint program. Left: extrema found when using a box filter to create the image pyramid.
Middle: extrema found by the keypoint program. Right: extrema found when using FFT to
create the image pyramid.

The extrema found in both convolution methods that are in within a few pixels of extrema

detected by the keypoint program from Lowe (2004) are marked with white circles.

This shows that although both convolution methods yield a different number of stable ex-

trema, nearly all of the extrema detected are in a similar or near position to extrema found by

the keypoint program.

This demonstrates that the extrema detection stage of the SIFT implementation finds extrema

with a reasonable amount of accuracy, and differences are most likely due to numerical inaccuracy

from floating point rounding errors in the methods used to create the image pyramid.

Due to the number of floating point operations involved in the box filter method, it is the

least accurate of the two methods due to accumulated rounding errors over the intervals of the

scale-space pyramid. The FFT method is very accurate due to the minimal number of floating

point operations used for each convolution.

Hessian Curvature Rejection

When estimating the principle curvature ratios at an extrema point by estimating a Hessian

matrix using local pixel differences, extrema on lines that are near 45 degrees are not rejected

properly.

28

After experimentation, it was found that by estimating a second Hessian matrix using pixel

offsets rotated by 45 degrees and filtering based on the largest curvature ratio from both Hessian

matrices, the number of line rejections improves as shown in figure 3.2.

Figure 3.2: Left: extrema detected using a single curvature ratio check. Right: extrema detected
using an additional curvature check using sample offsets rotated by 45 degrees.

3.4.2 Keypoint Matching

If the program is working correctly, then a number of similar keypoints should be detected in a

source image and the same image modified by an affine transform such as a 45 degree rotation.

The result of keypoint detection on a test image is shown in figure 3.3, and the keypoints

found in the same image rotated by 45 degrees is shown 3.4. These results demonstrate that

similar keypoints are detected in both images that can be used for matching.

Figure 3.3: Keypoints found in a test image.

29

Figure 3.4: Keypoints found in a rotated version of the test image.

The match program from Lowe’s (2004) SIFT demo was used to find matches between key-

points found in both images. The program draws lines between keypoints that are found to

match in both images. This can be used with visual inspection to assess matching accuracy. The

results from this matching program are shown in figure 3.5.

3.5 Discussion

The SIFT implementation presented in this chapter has been shown to detect extrema in scale-

space and create a reasonable amount of similar keypoints between images that can be used for

matching.

When compared to the performance of the keypoint program from Lowe (2004) the number of

matchable keypoints is less in this implementation. This could be due to differences in descriptor

construction and numerical accuracy.

Increasing the accuracy of the descriptor is something that could be studied further to improve

robustness of matching keypoints created by this program.

30

Figure 3.5: Results showing keypoint matches between both test images.

31

Chapter 4

Pose Database

This chapter describes the rationale behind the poses generated in the pose database used for

this project. The image database consists of 5,000 images with random human poses, viewing

angles and lighting conditions.

4.1 Curious Labs’ Poser

The program used to generate the pose database is Curious Labs Poser 5. This program is a

powerful animation tool specifically designed for animating human figures and rendering them

in a realistic way.

The program offers a stylised user interface through which various aspects of a character’s

appearance and pose can be controlled. The interfaces of interest for this database are that of

the ‘Pose’ and ‘Material’ screens.

The Pose screen allows the user to control the various joints using a parameter window, or

alternatively the user may hold and drag a limb in the 3D view to animate the character. When

the user moves a limb using the 3D view, the limb will influence other connected limbs based

on the limbs relative size. For instance, moving the arm of a figure will move the shoulder and

torso, but moving a finger will have less of an influence on the other joints due to it’s relatively

small size.

The Material interface provides a visual component based system for creating materials and

textures that can be applied to a part of a figure. Different material components in the interface

can be linked together to form simple materials, or many can be connected together to form

more complex materials.

Using these interfaces a set of 10 male human figures were created with varied clothing and

material types. To help vary the clothing appearance, some textures were used from a free online

texture library available at http://www.mayang.com/textures/ (Adnin & Smith 2005).

32

4.1.1 PoserPython

Although the program offers a well featured interface for creating different human poses, using

this to create thousands of images manually would be unrealistically time consuming. To help

relieve some of this work, the application provides an implementation of the Python scripting

language called PoserPython that can be used to automate many aspects the program.

Using this scripting language a figure’s limbs can be positioned, the view angle can be adjusted

and the lighting can be changed. For the pose database, all these variables were changed randomly

to give a set of many different poses.

4.2 Method

4.2.1 Range of Movement

To create the pose database, the default male figure was selected from the figures library and

limbs were identified that could be repositioned over the set of poses. The movements that were

identified were as follows.

• Arm side movements

• Torso left and right tilt

• Torso forward bend

• Various natural looking leg poses selected from Poser 5’s pose database

In addition to these body movements, the camera viewing angle is rotated around the figure

to give different viewpoints of a given pose. The movement ranges of the limbs are shown in

figure 4.1, and some example base poses for standing and walking are shown in figure 4.2.

Figure 4.1: Range of movement used to adjust figure pose over the database. These were
combined with a base walking or standing pose drawn from Poser 5’s pose library.

33

Figure 4.2: Some of the base poses used from the Poser 5 pose library.

4.2.2 PoseLib

The application’s PoserPython scripting language was used to generate the pose database. Using

this language, several classes and utility functions were created to control the figure’s pose in a

logical way. These classes are grouped up in a Python package called PoseLib.

Figure 4.3: Modules contained within the PoseLib package.

Shown in figure 4.3 are the PoseLib modules used by the main pose generation program. The

objects that control a pose or manipulate the scene in some way are known as Modifiers, and

reside inside the Modifiers module. There are various types of modifiers to control the different

limb movements, and each inherit from the Modifier class.

The main classes used to create the database reside in the Modifiers module. The other

modules contain pose data and miscellaneous utility functions.

Modifiers

A Modifier is an object that defines some aspect of a figure’s pose over a specified number of

steps in a sequence. Modifiers can be initialised to an arbitrary step number in the sequence,

and can be advanced incrementally through the sequence.

There are several different Modifier types that are responsible for controlling a certain aspect

of a figure’s pose.

34

Aggregate Types

In addition to the modification classes there are abstract aggregate types for grouping up more

than one modifier for more complex control over limb movements.

The first of these is called Composite, and is used to apply a set of modifiers in parallel. For

example, this class is useful for positioning a figure’s legs as more than one limb needs to be

adjusted to achieve a natural pose.

The other aggregate type is called Sequence, and allows the concatenation of other modifiers

in to a larger sequence. This class is useful to chain together otherwise unrelated modifiers in to

a single sequence, or simply link together shorter modifier sequences.

Both of these aggregate types can consist of other aggregates to create arbitrarily complex

sequences for controlling a figure’s pose.

Animation Builders

The third type of class within the PoseLib library is for generating a set of poses given a set

of modifiers and frame range parameters. There are two of these classes within the Modifiers

module.

The first is called AnimBuilder which constructs a pose set consisting of all possible combi-

nations of the set of modifiers given to it. This is done by recursively applying the modifiers and

advancing the frame number at the end of each modifier applied.

The second is RandomAnimBuilder which generates a set of random combinations of the

modifiers given to it and applies them to the figure. The random vectors can either be generated

internally by the class itself, or the class can be given a set of animation vectors containing the

desired pose at any given state.

4.2.3 Pose Creation

A Python script was created to generate the database using the classes introduces above. This

script controls the configuration of the animation and vector generation for the poses.

The script generates a set of random animation vectors for the entire 5,000 frame sequence

using a constant seed for Python’s random number generator (42 in the case of this database).

Each element of an animation vector represents a step number for its corresponding modifier. For

an animation vector v and a vector of modifiers m, an animation vector’s element vi corresponds

to the step number for the modifier mi from the vector of modifiers.

The 5,000 images in the database are split in to equal length sub-sequences of 500 frames

for each of the 10 figure models. For each of the image sub-sequences, the following steps are

performed:

• Pose generation for the 500 frame sub-sequence (generate_database.py)

• Figure selection

35

• Render frames

Figure 4.4 shows some sample images generated by the script. The figure is segmented from

the rest of the image using an alpha channel. This makes it easy to superimpose on top of a

background image, as discussed in section 4.2.4.

Figure 4.4: Sample poses rendered by Poser 5 for the database.

Some of the poses created look quite natural, but others – although physically plausible –

aren’t particularly common poses for a human figure to take. This will make the database quite

challenging.

1. Pose generation

To generate the pose for each image in the sub-sequence, the modifiers configured in the script

are applied in order. The first of the modifiers change the whole pose of the figure and so need

to be applied before the other more specialised modifiers. These initial modifiers are used to

create a natural looking walking and standing poses. These complete poses are taken from the

Pose libraries in Poser 5.

After the base pose has been set by the first modifier, the modifiers for controlling individual

limb movements are applied.

Finally, a random lighting condition is applied to the frame.

2. Figure selection

Once the poses for sub-sequence have been generated, the next stage is to select the figure that

will be used for this sub-sequence. The reason for selecting the figure after pose generation is

due to the way the poses are defined in script.

3. Render frames

Finally, once the pose sub-sequence has been created and lit, the images are rendered to disk in

PNG format. Each of the rendered images contain the figure pose on a transparent background

created using an alpha channel.

36

4.2.4 Preparing the database

Once all 5,000 pose images have been rendered to PNG files, they are superimposed on a random

background image region drawn from the negative training set in the INRIA Person database.

For training the classifier, the positive images need to be in a format that readily processed

by the HOG algorithm to generate a feature vector for the SVM. This final image is constructed

for a 64x128 window of HOG descriptors with a border of 16 pixels around the figure. Due to

the varied set of arm positions in the pose database, the height of the figure was used to rescale

the source pose to fit within the 16 pixel border.

To do this a program was developed to process a list of figures and a list of backgrounds to

draw from, and prepare a final image of dimensions 96x160 (64x128 plus a 16 pixel border) ready

for training. The design of this program is discussed in section 4.2.5.

Figure 4.5 shows a sample output from the program. The background regions used are

randomly sampled from the background images input to the program so not all background

images look entirely natural. However, they are sufficient for use as background clutter for the

pose images.

Figure 4.5: Sample images from the superimpose program. Each image is 96x160 pixels. Each
image has a 16 pixel margin around the centered 64x128 sample window and an approximate
border size of 16 pixel between the figure and centered 64x128 sample window.

4.2.5 The superimpose program

The program used to rescale and subsample the main pose set takes as its input a list of figures,

a list of backgrounds, an output directory and resampling and subregion options for processing

the figures.

The pseudo-code in table 4.1 gives a high level view of the program operation. For each of

the figures in the input list, the figure is processed based on the subsampling and resizing options

passed to the program. After the figure has been processed, a random background is selected and

37

the figure is superimposed on top of the background image using the alpha channel information

in the figure image generated by Poser 5.

superimpose program

(01) parse options

(02) load figure file list

(03) load background file list

(04) while (figurenumber < totalfigures)

(05) crop figure

(06) rescale figure

(07) pick random background

(08) superimpose figure on background

(09) save to output directory

(10) increment figurenumber

(--) end while

Table 4.1: Pseudo-code for the superimpose program.

Structure

The program consists of two main classes. The first is the ImageProcessor class that encapsu-

lates the algorithm shown in figure 4.1.

The second is the Image class. This class represents a 32 bit ARGB image, and includes

various methods to provide the image processing functionality required by the main program.

Among these methods are image copying and resampling routines, loading and saving routines,

as well as whole-pixel and (bilinear filtered) sub-pixel addressing methods.

Using the functionality of the Image class, the main program can process the figure and

background images efficiently.

Figure 4.6 shows how a subregion of the original pose render is resized to fit within a 96x160

image. The green box on the left image shows the desired subregion and the dotted black box

shows the desired inner border for the image. The distance between the green box and the outer

black box is the scaled 16 pixel margin.

38

Figure 4.6: Pose image subregion with inner border resampled to fit within the required 96x160
image with a 16x16 border, and combined with a background image.

39

Chapter 5

HOG Implementation

The implementations of the HOG algorithm used for the training phase of the HOG experiments

within this report are based on a modified version of an implementation in C provided by M.

Pawan Kumar, a PhD student from the Oxford Brookes University Vision group.

The changes made to this implementation include the addition of bilinear cell interpolation

to the R-HOG descriptor, the addition of the C-HOG descriptor and the separate program

compilations for R-HOG and C-HOG respectively.

This chapter outlines the operation of the training programs, discusses the descriptor imple-

mentations used, and introduces a new program for classification across multiple scales.

For the training the linear Support Vector Machine used in the classifier, a program called

SVM Light is used (Joachims 1999). This implementation of an SVM learner is optimised to

learn training databases with large feature vectors.

5.1 Descriptors

The two descriptor types both cover a 16x16 pixel sample area, and are arranged in a dense

grid across a 64x128 sample area window. The stride used to separate the descriptor blocks is

4 pixels, and the total number of descriptors in the x and y direction can be determined using

equations 5.1 and 5.2.

nx =
ww − bw + bs

bs
(5.1)

ny =
wh − bh + bs

bs
(5.2)

Where ww and wh are the window width and height respectively, bw and bh are the block

width and height respectively and bs is the block stride.

The descriptors are created in order from the top left of the window moving to the right, and

40

then begin again on the next row (where y′ = y + bs), as discussed in section 2.3.1. As each

descriptor is created it is appended to the end of the HOG window feature vector.

5.1.1 R-HOG Implementation

The R-HOG configuration used in the programs is the one identified in section 2.3.3, consisting

of a 2x2 grid of 8x8 histogram sample bins. The descriptor covers a sample area in the window

of 16x16 pixels, with each cell within the descriptor covering 8x8 samples.

Sample contributions are weighted by a Gaussian window positioned at the centre of the

descriptor block, and contribute to adjacent histogram bins within a cell using a bilinear inter-

polation scheme. The contribution is weighted based on the distance from the sample to the

centre of each histogram cell. The interpolation used in this dissertation is based on equations

5.3 and 5.4.

wc(Cij) = 1 − min

[‖s− cij‖
dc

, 1

]

(5.3)

wθ(hb) = 1 − min

[‖θ(s) − θb‖
dθ

, 1

]

(5.4)

Where wc(·) and wθ(·) determine the weighting for a cell and histogram angle bin respectively,

s is the (x, y) position of the sample, cij is the centre of the cell Cij , the function θ(·) finds the

gradient angle at a sample position, θb is the centre of histogram bin hb, and dc and dθ are the

cell spacing and histogram bin spacings respectively.

The gradient angle at the sample point is calculated using equation 5.5. This equation finds

the gradient angle ignoring the sign of the gradient direction, i.e. the angles +π
2

and −π
2

both

contribute to the same bins. The two functions δx(x, y) and δy(x, y) determine the central

differences at (x, y) (as defined in equation 2.10 from section 2.2.3).

θ(s) = cos−1

(

δx(sx, sy)
√

δx(sx, sy)2 + δy(sx, sy)2

)

(5.5)

The histogram bin contributions are determined by multiplying the gradient magnitude at

the sample point s with the cell and histogram bin weights and a Gaussian function defined in

equation 5.6 with a σ of half the descriptor window width1.

G(ds) =
1√
2π σ

· e
−d2

s

σ2 (5.6)

Where ds is the distance from the sample to the centre of the descriptor.

Once all the samples in the 16x16 area have been processed and their contributions to the

descriptor histogram cells have been accumulated, the descriptor is normalized then the descrip-

tor elements are thresholded so that none of the elements have a value greater than 0.2, and

1For the 16x16 sample area R-HOG descriptors used in this implementation, a value of 8 is used for σ.

41

then the descriptor is normalised again. This scheme is also used in the SIFT descriptors for

normalisation and gives the descriptor more emphasis on orientation distributions rather than

gradient strengths (Lowe 2004).

5.1.2 C-HOG Implementation

The C-HOG descriptor used in the experiments for this dissertation consist of a single central

cell, and 4 equally spaced angular cells. The radius of the central bin is 3 pixels, and the radius

of the outer cells is 5 pixels. The total radius of the descriptor is 8 pixels centred in the middle

of a 16x16 sample area.

As with the R-HOG descriptor, samples contribute to adjacent histogram cells using a bilinear

filtering based method. The sample position relative to the descriptor centre is used to determine

the radial and angular cell weighting.

The angular cell ca that the sample lies within is determined using equations 5.7 and 5.8.

ca =

⌊

sφ

dφ

⌋

(5.7)

sφ =

cos−1 (n · ~x) if n · ~y > 0

2π − cos−1 (n · ~x) if n · ~y < 0
(5.8)

Where n = s/‖s‖ and s is the sample (x, y) position. The vectors ~x and ~y are unit vectors

in the x and y directions respectively, sφ is the angle of the sample point from x axis relative

to the centre of the descriptor, and dφ is the spacing of the angular cells (π
2

for this descriptor

configuration).

The radial weighting is calculated by using the distance from the sample to the descriptor

centre. If distance from the sample is less than the central cell radius plus half the angular cell

radius then it contributes to both the central cell and one or more angular cells, otherwise it

contributes only to one or more angular cells.

wr(s) = 1 − min

[‖s− o‖
rc + 0.5ra

, 1

]

(5.9)

Where o is the descriptor centre s is the sample point location, rc is the radius of the central

cell, and ra is the radius of the angular cells.

The angular weighting is calculated based on the distance between the sample angle sφ and

the angle of the cell’s centre φi. Equation 5.10 shows how the angular weight is determined.

wa(Ai) = 1 − min

[|sφ − φi|
dφ

, 1

]

(5.10)

Where φi is the centre of angular cell Ai, and dφ is the spacing between angular cells.

The final contribution to each bin is the product of the two weights multiplied by the gradient

42

magnitude of the sample. This contribution is also interpolated across adjacent histogram bins

within the cells.

As with the R-HOG descriptor, once all the samples in the 16x16 area have been processed

the descriptor is normalised using a thresholded normalisation scheme as described in section

5.1.1.

5.2 Training

The training implementation is written in C and consists of two programs. The first is responsible

for generating the positive and negative feature vector examples ready for training the support

vector machine. The second program has a similar function, except that it creates feature vectors

with the x and y coordinates of the top left corner of the area used to create the HOG feature

vector 2.

These two programs facilitate the training of the SVM, the stages of which are as follows.

1. Create the positive and negative training examples using the training program.

2. Train the SVM using the training examples

3. Exhaustive search through negative examples across different scales to identify false posi-

tives.

4. Retrain the SVM with the original training examples along with the false positive examples.

The final two stages of training are to increase the accuracy of the classifier, as proposed

by Dalal & Triggs (2005). However, since the increase is relatively small in proportion to the

additional time taken to retrain the SVM, this dissertation follows the training up to step 2.

As demonstrated later, this causes some false positives to be identified by the SVM when

testing the classifiers on sample video data. Retraining the algorithm with the false positives

will reduce these false classifications.

The SVM is trained to create weight vectors for the R-HOG and C-HOG classifiers using the

positive and negative training data from INRIA database, and positive training data from the

Poser database combined with negative examples from the INRIA set. This results in 4 weight

vectors: two for INRIA and two for the Poser database.

The performances of these weight vectors are explored in section 5.6.

5.3 Training program

There are two versions of this program. One is compiled to generate R-HOG descriptors, and the

other is compiled to generate C-HOG descriptors. These are named train_rhog and train_chog

2This area is the top left of a 96x160 window consisting of the 64x128 HOG descriptor window plus a 16 pixel

border, as discussed in section 2.3.6.

43

respectively.

The general operation of the program can be summarized as follows.

training program

(01) parse options

(02) load positive example file list

(03) for each positive example

(04) create hog descriptor

(05) append to train pos.txt

(--) end for each

(06) load negative example file list

(07) for each negative example

(08) create hog descriptor

(09) append to train neg.txt

(--) end for each

Table 5.1: Pseudo-code for the HOG SVM training programs.

Once the descriptors have been created ready for training, the two training files are con-

catenated and the SVM Light’s svm_learn program is run to find the support vectors for the

classifier. This process takes around 6-7 hours for each descriptor type.

Once the svm_learn program has finished finding the support vectors a small program was

written to build weight vectors for the linear SVM from each of the SVM Light model files. These

are used for the multi-scale detector discussed later in this chapter.

5.4 Test program

As with the training program, there are two versions of this test example descriptor generator:

train_rhog and train_chog.

The operation of this program is almost identical to that of the training program, save that

instead of creating two separate descriptor output files all of the test examples are combined in

to a single file, and the x and y coordinates of the training sample are appended to the end each

of the descriptors. Since this is the only real difference between the two programs the details of

the program’s operation are omitted.

These training programs were used to create a set of testing samples for the INRIA classifiers.

The samples were then passed to the SVM Light svm_classify program to assess the relative

performance of the R-HOG and C-HOG descriptor implementations.

44

5.5 Multi-scale Classifier

To classify images effectively with HOG descriptors, it is necessary to search an image across

different scales using the HOG window. This is accomplished by resampling the image to be

searched to different scales using bilinear filtering. Dalal & Triggs (2005) stated that a separating

factor of 1.2 between image scales was used to exhaustively search negative images for false

positives so this implementation defaults to that scale separation factor.

A completely new program was written using descriptors based on the implementations used

in the training and testing programs. The program takes a linear SVM weight vector extracted

from an SVM model file created by the svm_learn program and uses it to scan across an image

at multiple scales to find positive classifications.

A high level overview of the algorithm used in the program is shown in Table 5.2.

ScaleClassify program

(01) parse options

(03) initialise descriptor type

(02) initialise the linear SVM

(04) load image list

(05) for each image in list

(06) create set of scales from initial scale to minimum size

(07) for each scale in search scales

(08) resample image to new scale

(09) compute edges

(10) analyse image

(--) end while

(11) filter positives

(12) optionally save output image

(13) save metadata for search

(--) end for

Table 5.2: Pseudo-code for the multi scale HOG classifier program.

The program first configures itself based on any options specified when the program was run.

There are a few required options and number of optional ones that allow more control over the

classifier program.

First the program selects the appropriate descriptor type to use (either R-HOG or C-HOG)

then loads the linear SVM weight vector that was specified when the program was run. The size

of the weight vector must match with the size of the HOG window feature vector, or classification

cannot take place.

Next the program opens a file containing a list of images specified by the user for processing.

45

For each of these images, the program creates a set of scales ranging from the initial search scale

configured by the user (the default is 1, i.e. start with the original image resolution) down to a

minimum window size (the default is 96x160).

For each of these scales the image is resampled, image gradients are calculated, and the image

is processed by the HOG sample window. The feature vector from the window is processed by

the linear SVM and a classification is made. If the classification is positive, the bounding box

and classification value are saved to a list for processing later.

The HOG window is moved across the image using a specified search stride (the default is 8

pixels). The total number of HOG windows in the x and y directions that are processed within

a given scale can be determined using the equation 5.11.

nx =
Iw − ww + ss

ss
(5.11)

ny =
Ih − wh + ss

ss
(5.12)

Where Iw and Ih are the image width and height at the current scale, ww wh are the HOG

sample window width and height respectively, and ss is the window search stride (64x128 in the

case of this implementation).

If there is any left over space in the image left over from fitting the grid of windows with the

current search stride, then the whole grid of windows is moved by half the left over distances

in the x and y directions. This effectively centres the grid of windows within the image being

searched.

Once all window positions have been classified for all scales for the current image, the positive

bounding boxes that were detected are processed using a non-maximum suppression scheme (by

default). Since the bounding boxes found at different scales will have different relative sizes, the

distance between box centres and the width of the bounding boxes are used to determine if an

adjacent bounding box is to be considered a neighbour for non-maximum suppression.

Finally, unless the program was run with an option to disable it, an output image is saved with

bounding boxes drawn to show all the positive classifications and their classification strengths.

A text file containing metadata information for the search is also saved so that the positive

classifications that were rejected can be perhaps be reprocessed, or the experiment can be re-run

using the same parameters for testing purposes. This metadata file contains the list of all positive

classifications found, the search parameters, and the original command line options used to run

the program.

5.5.1 Optimisation

The program contains an optimisation that speeds up the window classification greatly if the

search stride used by the window is a multiple of the stride used to separate descriptor blocks

within the sample window.

46

The basic idea behind this optimisation is that if the window were to shift 8 pixels to the

right and the block stride is 4, then all but two columns within the HOG window can be reused

as the area they cover is still within the window area and at a valid position for the next window.

The same holds for a vertical shift of 8 pixels for the window, but in the case of a vertical shift

all but two descriptor block rows can be reused.

When this optimisation is used, any invalid blocks from each row are moved to the opposite

end for horizontal shifts, and any invalid rows are moved to the opposite end of the window for

vertical window shifts. When these blocks are moved they are flagged as invalid to notify the

window that they need to be recalculated before appending them to the HOG window feature

vector.

To achieve this, each row of blocks within the window is represented by a linked list of

descriptors (one descriptor for each column in the row), and linked list rows holding the blocks

are in turn represented by a linked list of rows. This allows efficient moving of descriptor blocks

from one side of the window to the other for horizontal shifts, and linked lists rows to the either

end of the window for vertical shifts.

5.5.2 Structure

There are several classes used in the multi-scale classifier program. This section gives an overview

each of the main classes and structures used by the program.

Pyramid

This class encapsulates the image pyramid searching algorithm shown in lines 6-13 of the program

pseudo-code. It contains a HOGWindow and HOGShiftWindow class for each of the RHOG and CHOG

descriptor structures, an instance of LinearSVM and various parameters to control the search

process.

The class determines the best type of HOG window implementation to use based on the

options passed to it when the program was initialised. When the search stride is a multiple of

the window block stride then it uses a HOGShiftWindow by moving it only one search stride step

in a direction at a time, otherwise the HOGWindow implementation is used.

The search is made from the top left of the image shifting the window to the right until it

reaches the right edge of the image, then it shifts the window down one search step and moves

toward the left side of the image. This is the most efficient search pattern for the shift window,

s only a few rows or columns need to be recalculated at all but the first window position.

Image

The Image class is a slightly modified version of the one used for the superimpose program

discussed in section 4.2.5, but only supports 24bit RGB colour images and the PPM image file

47

format. Reusing this class saved a lot of development time, as it contains several useful methods

for image manipulation.

HOGWindow

This template class is a HOG descriptor window that is optimised for classifying random areas

within an image. It contains a single descriptor class instance that it reuses as while processing

the samples within the window area.

HOGShiftWindow

If an exhaustive search of an image scale is required and the search stride is a multiple of the HOG

window block stride, then this class is very efficient for classifying adjacent areas of an image.

This class is an implementation of the optimisation identified in section 5.5.1 so is efficient when

the hog window only needs to shift by few block strides for each classification.

LinearSVM

This class contains a simple implementation of a linear Support Vector Machine, and provides a

method to load weight vectors from file to be used in feature classification.

5.5.3 The RenderMD Program

In addition to the ScaleClassify program there is another program called RenderMD. This

program is capable of processing metadata created by the scale classifier program to render

bounding boxes on top of the metadata’s original source image.

If necessary the classifications within the metadata can be refiltered to use a different method

or all the results can be displayed without refiltering. This is possible because the metadata

contains all the positive classifications detected by the scale classification program in addition to

those rejected by any filtering that was being used at the time.

The real advantage to this program is that it can process results from up to 4 different

metadata files so that comparisons can be made on the same image. This reprocessing is useful

for varying filter settings without having to reprocess an image again using the ScaleClassify

program.

However, the program can only display the classifications that were originally accepted by the

scale classifier using the classification threshold parameter, so if a larger number of classifications

are required than are available within the metadata file, then the image will need to be reprocessed

by the ScaleClassify program.

48

5.6 Results

5.6.1 INRIA Classifier

Once the INRIA classifier had been trained, the svm_classify program from SVM Light was

run to quantify the relative performance of the R-HOG and C-HOG descriptor implementations.

The results of the program are shown in figure 5.1.

Figure 5.1: ROC curve showing relative performances of the R-HOG descriptor (shown in red)
and C-HOG descriptor (shown in blue) on the INRIA database.

The graph in figure 5.1 shows that the R-HOG descriptor performs slightly better than the

C-HOG descriptor.

5.6.2 Poser Database Performance

The estimated performance reported by the svm_learn program of the classifiers trained using

the Poser Database is not as good as the classifiers trained using the INRIA database. Table

5.3 shows the estimates determined by svm_learn when each of the INRIA and Poser based

classifiers were trained.

Classifier Estimated Precision Estimated Recall
INRIA C-HOG 99.20% 88.37%
INRIA R-HOG 96.68% 95.74%
Poser C-HOG 71.63% 84.09%
Poser R-HOG 71.96% 83.88%

Table 5.3: Estimates of recall and precision for the descriptor types of the INRIA and Poser
classifiers.

49

This shows that the Poser Database is more difficult for the linear SVM to learn. The use of

a non-linear kernel based Support Vector Machine might improve the performance of the Poser

classifiers at the expense of higher computation times.

5.6.3 Multi-scale Detection Results

The multi scale detector was run on 5 images taken from the positive testing images in the INRIA

database. These contain one or more people at varying scales and poses, and make a good test

of the classifiers.

The results of the processing these images with the INRIA and Poser trained classifiers are

listed in appendix A.

The INRIA trained classifiers performed best, so they were also used to try and find a human

figure in a motion capture dataset from 4 different viewing angles (Sigal, Bhatia, Roth, Black &

Isard 2004). Some sample frames from these results are shown in figure 5.2.

Figure 5.2: Sample frames from INRIA trained video classification. A green box shows the
bounding box estimate from the INRIA R-HOG classifier and a blue box shows the estimate
from the C-HOG classifier. A white box is when both classifiers agree on the bounding box
position and size.

The green and blue bounding boxes in the images represent the bounding box predicted by the

INRIA R-HOG and C-HOG classifiers respectively. Since the videos contain only one person and

the scale doesn’t vary much between images, frames were analysed at only one scale to speed

up classification and the results were filtered by selecting the strongest positive classification

50

value. The scale was chosen to be where the person in the video fits comfortably within the

HOG detection window: at a scale of around one third of the original frame image size.

5.7 Discussion

5.7.1 Descriptor Performance

The results presented in Dalal & Triggs (2005) show that their implementation of the C-HOG

descriptor performs slightly better than their R-HOG descriptor implementations. However, the

performance of the C-HOG and R-HOG descriptors in this implementation actually show the

opposite of this.

Differences between the implementation is in Dalal & Triggs (2005) and the one presented in

this dissertation may well be the cause of this, and it is also possible that the retraining of the

SVM with false positives may increase the performance of the C-HOG descriptor to be better

than that of the R-HOG descriptor.

The results on the 5 test images and the motion capture video sequence from Sigal et al.

(2004) show that the R-HOG descriptor tends to give a ‘best guess’ but is susceptible to false

positives, whereas the C-HOG descriptor is more accurate but at times will be able to classify

anything at all.

This can be seen more clearly in the Cam1 sequence from the video set where the C-HOG

descriptor will fail to find any positive classifications over sets of frames, but the R-HOG still

continues to classify areas of the image (albeit not always correct).

5.7.2 Poser Database Trained Classifier

The results in the 5 test images using the classifiers trained using the Poser Database (see

appendix A.2) show that the performance is not particularly good. Both the Poser R-HOG and

C-HOG based classifiers find more false positives than their INRIA equivalent. This is most

likely due to the wide range poses in the positive training data making it difficult to train the

SVM, as discussed previously in section 5.6.2.

51

Chapter 6

Conclusion

The results from the SIFT implementation demonstrate that the program works successfully,

although the keypoints are not as robust as keypoints generated by the demo program from Lowe

(2004). This is most likely due to differences in the convolution method used in and descriptor

creation. However, the keypoints found by the SIFT program presented by this dissertation are

sufficiently accurate for matching.

The number of extrema found by the two convolution methods used in the SIFT implemen-

tation were slightly different. The FFT based convolution method produced fewer keypoints

overall, but this could be due to the minimum contrast threshold for extrema being too high for

this method.

The similarities between the SIFT algorithm and the recently published Histograms of Ori-

ented Gradients (HOG) algorithm are mainly in their descriptors. Both algorithms use blocks of

threshold normalised several 1 edge orientation histograms and this seems to be a good way of

representing local pixel information in a robust way suitable for object classification.

In most other respects however, the HOG algorithm’s use of its descriptors are quite different.

SIFT uses extrema in the difference-of-Gaussian function of the scale-space representation of an

image to sparsely position its descriptors. In contrast, HOG uses a very dense grid of overlapping

descriptors within a detection window to create a feature vector that can be classified by a

Support Vector Machine.

Although the HOG descriptors are shown to perform better at classifying the positive exam-

ples than several other descriptor types (Dalal & Triggs 2005), the overall algorithm does not

handle the issue of rotational invariance on the objects it attempts to classify. This means that

if an image were rotated by 45 degrees for example, then the same objects that would normally

by classified by the detection window would no longer be detected.

Another issue with the HOG algorithm is that the dense grid of descriptors in the detection

window creates a very high dimension feature vector that makes training the Support Vector

1The histogram block is normalised, thresholded so that values are no larger than a specified maximum, then

normalised again.

52

Machine a rather slow and resource demanding process. Once the SVM is trained however, the

classification of feature vectors is quite fast.

The Poser Database presented by this dissertation has been shown to be a challenging set

to classify, and suggests that the HOG algorithm in its current state might not be suited for

classifying the more varied poses that the database contains. A parts based model as suggested

by Dalal & Triggs (2005) might increase the HOG algorithm’s performance with this database.

The algorithms explored in this dissertation both have advantages and disadvantages. The

SIFT algorithm is quick at processing large images due to the way it places its descriptors at

sparsely distributed interest points, but the algorithm is quite complicated to implement for

object recognition compared to the HOG algorithm.

The simplicity of the HOG algorithm and its good performance at classification makes it a

good choice for object classification, but its sensitivity to rotation limits the range of applications

that it can be used in.

6.1 Future Work

The method of convolution used to create the image pyramid influences the overall number of

keypoints created by the SIFT algorithm. It would be interesting to explore the effect of different

convolution methods on the number of robust keypoint descriptors produced by the algorithm.

An efficient solution to the problem of rotational invariance for the HOG algorithm would

be a challenging problem to solve, but would be one that could greatly broaden the number of

applications the algorithm can be used in.

Exploring some of the possible areas of improvement identified by Dalal & Triggs (2005)

would also be worthwhile and could speed up the algorithm significantly on classifying large

areas. Methods that can quickly identify smaller areas of interest in a large image would be

particularly useful and could reduce computation time enough for HOG to be used in real time

classification tasks.

53

Appendix A

Classification Results

The classifiers were both run over 5 images selected from the INRIA database. They each contain

different numbers of people and at different levels of occlusion. The first set shows the results

from the classifier trained using the INRIA database, and the second set shows the results from

the classifier trained using the Poser database.

54

A.1 INRIA Database Classifier Results

Figure A.1: Results of INRIA trained multi-scale classification using on test image 1.

55

Figure A.2: Results of INRIA trained multi-scale classification using on test image 2.

Figure A.3: Results of INRIA trained multi-scale classification using on test image 3.

56

Figure A.4: Results of INRIA trained multi-scale classification using on test image 4.

Figure A.5: Results of INRIA trained multi-scale classification using on test image 5.

57

A.2 Poser Database Classifier Results

Figure A.6: Results of Poser trained multi-scale classification using on test image 1.

58

Figure A.7: Results of Poser trained multi-scale classification using on test image 2.

Figure A.8: Results of Poser trained multi-scale classification using on test image 3.

59

Figure A.9: Results of Poser trained multi-scale classification using on test image 4.

Figure A.10: Results of Poser trained multi-scale classification using on test image 5.

60

Appendix B

SIFT Program Source

The following pages list the complete source code for the SIFT implementation. The program is

run in the following way:

SIFT inputfile outputfolder [options]

Where inputfile is a PNG or (binary) PGM image, outputfolder is the destination folder

for all the output files generated by the program. All output files are named using the original

file name, plus an appropriate suffix for the type of file, i.e. an example output file name might

be inputfile_desc.txt for the plain text descriptor data file.

The options can be any of the following:

-c [float] Specifies a minimum contrast threshold to use for rejecting extrema.

Any extrema in the difference-of-Gaussian function with values less than

the minimum contrast value are rejected. The default value for this

parameter is 0.02.

-r [float] Specifies a principle curvature ratio threshold to use for rejecting ex-

trema. Any extrema point that has a principle curvature ratio of equal

greater than this value is rejected. The default value for this parameter

is 10.

-o [int] Specifies the number of octaves to use for analysing the image. The

default value for this parameter is 4.

-i [int] Specifies the number of intervals to use for analysing the image. The

default value for this parameter is 3.

-f Enables FFT based convolution for creating the Gaussian scale-space

pyramid for this source image. The default is not to use FFT based

convolution.

61

-p Save image Gaussian scale-space pyramid and difference-of-Gaussian

pyramids created from the source image to file. The default setting

is not to save the pyramids.

-p Save image Gaussian scale-space pyramid and difference-of-Gaussian

pyramids created from the source image to file. The default setting

is not to save these pyramids.

-s Enables subsampling of image gradients when creating the SIFT de-

scriptors. This is where samples at positions with fractional parts are

sampled using bilinear interpolation based on the surrounding image gra-

dient data. The default is not to interpolate local gradient data when

creating descriptors.

62

Appendix C

Test and Train Program Source

The Train and Test programs are modified versions of those contributed by M. Pawan Kumar

for training a linear support vector machine under SVM Light ready for classification.

The main areas of change are within the HOG.cpp and CHOG.cpp files in their respective

descriptor block creation code. There are also some additions such as a vect2 type to simplify

the C-HOG descriptor calculation.

The other change is that instead of compiling to a single file, the make file is configured to

create two separate binaries: one for C-HOG and one for R-HOG descriptors.

C.1 Train Program

The following pages are the main source code files for computing descriptors to be used with the

SVM Light svm_learn program for training. The programs are run in the following way:

train_chog pos_examples.txt neg_examples.txt mode

train_rhog pos_examples.txt neg_examples.txt mode

Where pos_examples.txt is a file containing the set of normalised (96x160) positive example

files, and neg_examples.txt is a file containing a set of negative images to sample random

patches from to create negative examples. The mode parameter is set to 0 for all runs in the

experiments for this dissertation.

151

C.2 Test Program

The following pages are the main source code files for computing descriptors to be used with the

SVM Light svm_classify program to assess performance. The program is run in the following

way:

test_chog pos_examples.txt neg_examples.txt testoutput.txt

test_rhog pos_examples.txt neg_examples.txt testoutput.txt

Where pos_examples.txt is a file containing the set of normalised positive example files,

and neg_examples.txt is a file containing a set of negative images to sample random patches

from to create negative examples, and testoutput.txt is the name for the output file.

The normalised positive example images are usually 96x160 in resolution which are made up

of a centred 64x128 sample area for the detection window a plus 16 pixel margin around it, but

the program supports positive examples with margins of any number greater than 0 and will

center the 64x128 sample window in the example image when creating the feature vectors.

158

C.3 Shared Source Code

The following pages contain source files that are shared between both programs and contain all

the code for actually generating the HOG descriptors and feature vector as well as some more

low-level memory management and utility functions.

163

Appendix D

ScaleClassify Program Source

The following pages contain source files for the ScaleClassify program. The program can be

run in the following way:

ScaleClassify (-chog/-rhog) svm_weight.txt files.txt outputpath [options]

Where either -chog or -rhog must be specified for C-HOG or R-HOG classification respec-

tively; svm_weight.txt is the file containing the appropriately sized weight vector; files.txt

contains the set of files to classify; ouputpath is the destination folder for the output files. The

options can be any of the following:

-t [float] Threshold value for classification (default: 0).

-w [int] The minimum width for levels in the scale pyramid (default: 96).

-h [int] The minimum height for levels in the scale pyramid (default: 160).

-i [float] Initial scale for scale pyramid (default: 1).

-z [float] Scale separation between levels in the scale pyramid (default: 1.2).

-s [int] HOG window search stride (multiples of 4 are fastest, default: 8).

-m [int] The maximum number of levels for the pyramid (default: no maximum).

-fnms Filter positive classifications using non-max suppression (default filter

type).

-fmax Filter by just considering largest response as the only positive.

-fnone Don’t apply a filter to positive classifications.

-d Only save metadata and don’t save an output image with bounding boxes

drawn for positive classifications.

181

Appendix E

RenderMD Program Source

The following pages contain the source code for the RenderMD program. The program can be

run in the following way:

RenderMD files.txt outputdir -t[r/b/g/y] name1 [-t[r/b/g/y] name2 ...] [options]

Where files.txt is the set of files to process, outputdir is the output directory to place the

rendered images, and: -tr name, -tg name, -tb name and -ty name are the tag names used for

drawing classification boxes in red, blue, green, or yellow respectively. Additional options may

be any of the following:

-fnone Refilter classifications using no filter (i.e. display positives + rejections).

-fnms Refilter classifications using non-max suppression.

-fmax Refilter classifications choosing only maximum response.

-n [float] Specifies the minimum nearest neighbour overlap ratio threshold. This

is the minimum percentage overlap between two boxes that must occur

before they are considered neighbours. The value must be in the range

[0,1] (default: 0.5).

-b [float] Use this additional threshold bias for results (default: don’t use addi-

tional threshold).

-g [image] Draw the specified PPM image at the top left of the all output images.

This is useful for drawing a key defining the what each classification box

colour represents. The default is to not display an image.

The metadata is loaded based on the name given to the specified tag. When after loading an

image for processing, the tag name is appended to the directory that the image is within to find

the metadata associated with the image. For instance if a tag was specified as -tr rhog and the

221

full path name of the image being processed was C:\images\image.ppm then for the metadata

for the rhog tag would be loaded from C:\images\rhog\image_metadata.txt.

222

Appendix F

PoseLib Source code

The following pages contain the source code for the main classes and methods from the set of

PoseLib scripts. The method used to generate the pose database using these scripts is discussed

in detail in chapter 4.

244

Appendix G

Superimpose Program Source

The following pages contain the source code for the superimpose program used to create the

normalised versions of the poser training images by superimposing them on random background

regions. The program is run as follows:

superimpose figures.txt backgrounds.txt [options]

Where the additional program options can be the following:

options=file.txt Load options from the specified file.

subregion=x,y,w,h Use this subregion area from the source images, where x and

y is the position of the top left of the subregion, with w and h

specifying the width and height of the subregion. The default

is to use the original image dimensions.

resample=w,h Resample the subregion to this size.

innermargin=m Use this value for the inner margin (see section 4.2.5).

262

Bibliography

Adnin, M. M. & Smith, W. (2005), ‘Mayang’s free texture library’,
Website: http://www.mayang.com/textures/.

Dalal, N. & Triggs, B. (2005), Histograms of oriented gradients for human detection, in
C. Schmid, S. Soatto & C. Tomasi, eds, ‘International Conference on Computer Vi-
sion & Pattern Recognition’, Vol. 2, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe,
Montbonnot-38334, pp. 886–893.
*http://lear.inrialpes.fr/pubs/2005/DT05

El-Maraghi, T. F. (2004), ‘MatLab SIFT tutorial’, University of Toronto
website: http://www.cs.toronto.edu/∼jepson/csc2503/.

Frigo, M. & Johnson, S. G. (2005), ‘The design and implementation of FFTW3’, Proceedings
of the IEEE 93(2), 216–231. special issue on ”Program Generation, Optimization, and
Platform Adaptation”.

Gustavsson, C., Hui, A. & Turitzin, M. (2004), ‘Improving SIFT features / finding planes in
hallways’, website: http://robots.stanford.edu/cs223b04/project9.html.

Hearn, D. & Baker, M. P. (2004), Computer Graphics: C Version with OpenGL, Pearson Prentice
Hall.

Iijima, T. (1959), Basic theory of pattern observation, in ‘Papers of Technical Group on Automata
and Automatic Control’, IECE, Japan. (in Japanese, cited in Weickert et al. (1999)).

Joachims, T. (1999), Making large-Scale SVM Learning Practical. Advances in Kernel Methods
- Support Vector Learning, B. Schlkopf and C. Burges and A. Smola (ed.), MIT-Press,
chapter 11.

Ke, Y. & Sukthankar, R. (2003), PCA-SIFT: A more distinctive representation for local image
descriptors, Technical report IRP-TR-03-15, Intel.

Koenderink, J. J. (1984), ‘The structure of images’, Biological Cybernetics 50, 363–370.

Lindeberg, T. (1994), ‘Scale-space theory: A basic tool for analysing structures at different
scales’, Journal of Applied Statistics 21(2), 224–270.

Lowe, D. G. (1999), Object recognition from local scale-invariant features, in ‘International
Conference on Computer Vision’, Corfu, Greece, pp. 1150–1157.

Lowe, D. G. (2004), ‘Distinctive image features from scale-invariant keypoints’, International
Journal of Computer Vision 60(2), 91–110.

287

PNG Development Group (2005), ‘Libpng’, Website: http://www.libpng.org/pub/png/

libpng.html.

Sigal, L., Bhatia, S., Roth, S., Black, M. & Isard, M. (2004), ‘Tracking loose-limbed paople’,
Proc. IEEE Conf. on Computer Vision and Pattern Recognition .

Weickert, J. A., Ishikawa, S. & Imiya, A. (1999), ‘Linear scale-space has first been proposed in
Japan’, Journal of Mathematical Imaging and Vision 10(3), 237–252.

Witkin, A. P. (1983), Scale–space filtering, in ‘International Joint Conference on Artificial Intel-
ligence’, Karlsruhe, Germany, pp. 1019–1022.

288

