
Bilinear CNN Models for Fine-grained Visual Recognition

Tsung-Yu Lin Aruni RoyChowdhury Subhransu Maji
University of Massachusetts, Amherst

{tsungyulin,arunirc,smaji}@cs.umass.edu

Abstract

We propose bilinear models, a recognition architecture
that consists of two feature extractors whose outputs are
multiplied using outer product at each location of the im-
age and pooled to obtain an image descriptor. This archi-
tecture can model local pairwise feature interactions in a
translationally invariant manner which is particularly use-
ful for fine-grained categorization. It also generalizes var-
ious orderless texture descriptors such as the Fisher vec-
tor, VLAD and O2P. We present experiments with bilinear
models where the feature extractors are based on convolu-
tional neural networks. The bilinear form simplifies gra-
dient computation and allows end-to-end training of both
networks using image labels only. Using networks initial-
ized from the ImageNet dataset followed by domain spe-
cific fine-tuning we obtain 84.1% accuracy of the CUB-
200-2011 dataset requiring only category labels at train-
ing time. We present experiments and visualizations that
analyze the effects of fine-tuning and the choice two net-
works on the speed and accuracy of the models. Results
show that the architecture compares favorably to the exist-
ing state of the art on a number of fine-grained datasets
while being substantially simpler and easier to train. More-
over, our most accurate model is fairly efficient running
at 8 frames/sec on a NVIDIA Tesla K40 GPU. The source
code for the complete system will be made available at
http://vis-www.cs.umass.edu/bcnn

1. Introduction

Fine-grained recognition tasks such as identifying the
species of a bird, or the model of an aircraft, are quite
challenging because the visual differences between the cat-
egories are small and can be easily overwhelmed by those
caused by factors such as pose, viewpoint, or location of the
object in the image. For example, the inter-category vari-
ation between “Ringed-beak gull” and a “California gull”
due to the differences in the pattern on their beaks is signifi-
cantly smaller than the inter-category variation on a popular
fine-grained recognition dataset for birds [37].

…

…

bilinear vector

softmax

convolutional + pooling layers

CNN stream A

CNN stream B

…

Chestnut_Sided_Warbler_0110_164023.jpg

chestnut!
sided!
warbler

Figure 1. A bilinear CNN model for image classification. At
test time an image is passed through two CNNs, A and B, and
their outputs are multiplied using outer product at each location of
the image and pooled to obtain the bilinear vector. This is passed
through a classification layer to obtain predictions.

A common approach for robustness against these nui-
sance factors is to first localize various parts of the object
and model the appearance conditioned on their detected
locations. The parts are often defined manually and the
part detectors are trained in a supervised manner. Recently
variants of such models based on convolutional neural net-
works (CNNs) [2, 38] have been shown to significantly
improve over earlier work that relied on hand-crafted fea-
tures [1, 11, 39]. A drawback of these approaches is that
annotating parts is significantly more challenging than col-
lecting image labels. Morevoer, manually defined parts may
not be optimal for the final recognition task.

Another approach is to use a robust image represen-
tation. Traditionally these included descriptors such as
VLAD [20] or Fisher vector [28] with SIFT features [25].
By replacing SIFT by features extracted from convolu-
tional layers of a deep network pre-trained on ImageNet [9],
these models achieve state-of-the-art results on a number
of recognition tasks [7]. These models capture local fea-
ture interactions in a translationally invariant manner which
is particularly suitable for texture and fine-grained recogni-
tion tasks. Although these models are easily applicable as
they don’t rely on part annotations, their performance is be-
low the best part-based models, especially when objects are
small and appear in clutter. Moreover, the effect of end-to-
end training of such architectures has not been fully studied.

1

http://vis-www.cs.umass.edu/bcnn

Our main contribution is a recognition architecture that
addresses several drawbacks of both part-based and texture
models (Fig. 1 and Sect. 2). It consists of two feature ex-
tractors based on CNNs whose outputs are multiplied using
the outer product at each location of the image and pooled
across locations to obtain an image descriptor. The outer
product captures pairwise correlations between the feature
channels and can model part-feature interactions, e.g., if one
of the networks was a part detector and the other a local
feature extractor. The bilinear model also generalizes sev-
eral widely used orderless texture descriptors such as the
Bag-of-Visual-Words [8], VLAD [20], Fisher vector [28],
and second-order pooling (O2P) [3]. Moreover, the archi-
tecture can be easily trained end-to-end unlike these texture
descriptions leading to significant improvements in perfor-
mance. Although we don’t explore this connection further,
our architecture is related to the two stream hypothesis of
visual processing in the human brain [15] where there are
two main pathways, or “streams”. The ventral stream (or,
“what pathway”) is involved with object identification and
recognition. The dorsal stream (or, “where pathway”) is in-
volved with processing the object’s spatial location relative
to the viewer. Since our model is linear in the outputs of
two CNNs we call our approach bilinear CNNs.

Experiments are presented on fine-grained datasets of
birds, aircrafts, and cars (Sect. 3). We initialize various bi-
linear architectures using models trained on the ImageNet,
in particular the “M-Net” of [5] and the “verydeep” network
“D-Net” of [32]. Out of the box these networks do remark-
ably well, e.g., features from the penultimate layer of these
networks achieve 52.7% and 61.0% accuracy on the CUB-
200-2011 dataset [37] respectively. Fine-tuning improves
the performance further to 58.8% and 70.4%. In compari-
son a fine-tuned bilinear model consisting of a M-Net and
a D-Net obtains 84.1% accuracy, outperforming a number
of existing methods that additionally rely on object or part
annotations (e.g., 82.0% [21], or 75.7% [2]). We present ex-
periments demonstrating the effect of fine-tuning on CNN
based Fisher vector models [7], the computational and ac-
curacy tradeoffs of various bilinear CNN architectures, and
ways to break the symmetry in the bilinear models using
low-dimensional projections. Finally, we present visualiza-
tions of the models in Sect. 4 and conclude in Sect. 5.

1.1. Related work

Bilinear models were proposed by Tanenbaum and Free-
man [33] to model two-factor variations, such as “style”
and “content”, for images. While we also model two fac-
tor variations arising out of part location and appearance,
our goal is prediction. Our work is also related to bilinear
classifiers [29] that express the classifier as a product of two
low-rank matrices. However, in our model the features are
bilinear, while the classifier itself is linear. Our reduced di-

mensionality models (Sect. 3.3) can be interpreted as bilin-
ear classifiers. “Two-stream” architectures have been used
to analyze video where one networks models the temporal
aspect, while the other models the spatial aspect [12, 31].
Ours is a two-steam architecture for image classification.

A number of recent techniques have proposed to use
CNN features in an orderless pooling setting such as Fisher
vector [7], or VLAD [14]. We compare against these meth-
ods. Two other contemporaneous works are of interest.
The first is the “hypercolumns” of [17] that jointly con-
siders the activations from all the convolutional layers of
a CNN allowing finer grained resolution for localization
tasks. However, they do not consider pairwise interactions
between these features. The second is the “cross-layer pool-
ing” method of [24] that considers pairwise interactions be-
tween features of adjacent layers of a single CNN. Our bi-
linear model can be seen as a generalization of this approach
using separate CNNs simplifying gradient computation for
domain specific fine-tuning.

2. Bilinear models for image classification

In this section we introduce a general formulation of a
bilinear model for image classification and then describe a
specific instantiation of the model using CNNs. We then
show that various orderless pooling methods that are widely
used in computer vision can be written as bilinear models.

A bilinear model B for image classification consists of a
quadruple B = (fA, fB , P, C). Here fA and fB are feature
functions, P is a pooling function and C is a classification
function. A feature function is a mapping f : L ⇥ I !
Rc⇥D that takes an image I and a location L and outputs a
feature of size c⇥D. We refer to locations generally which
can include position and scale. The feature outputs are com-
bined at each location using the matrix outer product, i.e.,
the bilinear feature combination of fA and fB at a location
l is given by bilinear(l, I, fA, fB) = fA(l, I)T fB(l, I).

Both fA and fB must have the feature dimension c to
be compatible. The reason for c > 1 will become clear
later when we show that various texture descriptors can be
written as bilinear models. To obtain an image descrip-
tor the pooling function P aggregates the bilinear feature
across all locations in the image. One choice of pooling
is to simply sum all the bilinear features, i.e., �(I) =P

l2L bilinear(l, I, fA, fB). An alternative is max-pooling.
Both these ignore the location of the features and are hence
orderless. If fA and fB extract features of size C ⇥M and
C ⇥ N respectively, then �(I) is of size M ⇥ N . The bi-
linear vector obtained by reshaping �(I) to size MN ⇥ 1
is a general purpose image descriptor that can be used with
a classification function C. Intuitively, the bilinear form al-
lows the outputs of the feature exactors fA and fB to be
conditioned on each other by considering all their pairwise
interactions similar to a quadratic kernel expansion.

2.1. Bilinear CNN models

A natural candidate for the feature function f is a CNN
consisting of a hierarchy of convolutional and pooling lay-
ers. In our experiments we use CNNs pre-trained on the
ImageNet dataset [9] truncated at a convolutional layer in-
cluding non-linearities as feature extractors. By pre-training
we benefit from additional training data when domain spe-
cific data is scarce. This has been shown to be benefi-
cial for a number of recognition tasks ranging from ob-
ject detection, texture recognition, to fine-grained classifi-
cation [6, 10, 13, 30]. Another advantage of using only
the convolutional layers, is the resulting CNN can process
images of an arbitrary size in a single forward-propagation
step and produce outputs indexed by the location in the im-
age and feature channel.

In all our experiments we use sum-pooling to aggregate
the bilinear features across the image. The resulting bilin-
ear vector x = �(I) is then passed through signed square-
root step (y sign(x)

p
|x|), followed by `2 normaliza-

tion (z y/||y||2) inspired by [28]. This improves perfor-
mance in practice (see supplementary material for experi-
ments evaluating the effect of these normalizations). For
the classification function C we use logistic regression or
linear SVM. This can be replaced with a multi-layer neural
network if non-linearity is desirable.

End-to-end training Since the overall architecture
is a directed acyclic graph the parameters can be trained
by back-propagating the gradients of the classification loss
(e.g., conditional log-likelihood). The bilinear form simpli-
fies the gradients at the pooling layer. If the outputs of the
two networks are matrices A and B of size L⇥M and L⇥N
respectively, then the pooled bilinear feature is x = AT B of
size M ⇥N . Let d`/dx be the gradient of the loss function
` wrto. x, then by chain rule of gradients we have:

d`

dA
= B

✓
d`

dx

◆T

,
d`

dB
= A

✓
d`

dx

◆
. (1)

The gradient of the classification and normalization layer
is straightforward, and the gradient of the layers below the
pooling layer can be computed using the chain rule. The
scheme is illustrated in Fig 2. We fine-tune our model using
stochastic gradient descent with mini-batches with weight
decay and momentum as described in Sect 3.1.

2.2. Relation to orderless texture descriptors

In this section we show that various orderless texture de-
scriptors can be written as bilinear models. These methods
typically extract local features such as SIFT densely from
an image and pass them through a non-linear encoder ⌘.
A popular encoder is a Gaussian mixture model (GMM)
that assigns features to the k centers, C = [µ1, µ2, . . . , µk],

`2sqrt

d`

dB
 � A

✓
d`

dz

dz

dy

dy

dx

◆

d`

dA
 � B

✓
d`

dz

dz

dy

dy

dx

◆T

A

B

x = AT B y z

Figure 2. Computing gradients in the bilinear CNN model.

based on their GMM posterior. When these encoded de-
scriptors are sum-pooled across the image we obtain the
Bag-of-Visual-Words (BoVW) model [8]. Using the bilin-
ear notation this can be written as B = (⌘(fsift), 1, P, C),
i.e., a bilinear model where the second feature extractor fB

simply returns 1 for all input.
The Vector of Locally Aggregated Descriptors (VLAD)

descriptor [20] aggregates the first order statistics of the
SIFT descriptors. Each descriptor x is encoded as (x �
µk) ⌦ ⌘(x), where ⌦ is the kroneker product and µk is
the closest center to x. In the VLAD model ⌘(x) is set
to one for the closest center and zero elsewhere, also re-
ferred to as “hard assignment.” These are aggregated across
the image by sum pooling. Thus VLAD can be written as
a bilinear model with fA = [x � µ1;x � µ2; . . . ;x � µk],
i.e., fA has k rows each corresponding to each center, and
fB = diag(⌘(x)), a matrix with ⌘(x) in the diagonal and
zero elsewhere. Notice that the feature extractors for VLAD
output a matrix with k > 1 rows.

The Fisher vector (FV) [28] computes both the first order
↵i = ⌃

� 1
2

i (x� µi) and second order �i = ⌃�1
i (x� µi)�

(x � µi) � 1 statistics, which are aggregated weighted by
⌘(x). Here µi and ⌃i is the mean and covariance of the ith

GMM component respectively and� denotes element-wise
multiplication. This can be written as a bilinear model with
fA = [↵1 �1; ↵2 �2; . . . ; ↵k �k] and fB = diag(⌘(x)).

In both VLAD and FV the encoding function ⌘ can be
viewed as a part detector. Indeed it has been experimen-
tally observed that the GMM centers tend to localize facial
landmarks when trained on faces [27]. Thus, these mod-
els simultaneously localize parts and describe their appear-
ance using joint statistics of the encoding ⌘(x) and feature
x which might explain their effectiveness on fine-grained
recognition tasks. Another successful method for semantic
segmentation is the second-order pooling (O2P) method [3]
that pools the covariance of SIFT features extracted locally
followed by non-linearities. This is simply the bilinear
model B = (fsift, fsift, P, C).

In all these descriptors both fA and fB are based on the
same underlying feature x, e.g., SIFT or CNN. One may
want to use different features to detect parts and to describe
their appearance. Furthermore, these methods typically do
not learn the feature extractor functions and only the pa-
rameters of the encoder ⌘ and the classifier function C are
learned on a new dataset. Even when CNN features are

pooled using FV method, training is usually not done end-
to-end since it is cumbersome to compute the gradients of
the network since fA and fB both depend on the x. Our
main insight is to decouple fA and fB which makes the
gradient computation significantly easier (Eqn. 1), allowing
us to fine-tune the feature extractors on specific domains.
As our experiments show this significantly improves the ac-
curacy. For Fisher vector CNN models we show that even
when fine-tuning is done indirectly, i.e., using a different
pooling method, the overall performance improves.

3. Experiments

3.1. Methods

In addition to SIFT, we consider two CNNs for ex-
tracting features in the bilinear models – the M-Net of [5]
and the verydeep network D-Net of [32] consisting of 16
convolutional and pooling layers. The D-Net is more ac-
curate but is about 7⇥ slower on a Tesla K40 GPU. In
both cases we consider the outputs of the last convolutional
layer with non-linearities as feature extractors, i.e., layer 14
(conv5+relu) for the M-net and layer 30 (conv5 4+relu) for
the D-Net. Remarkably, this represents less than 10% of
the total number of parameters in the CNNs. Both these
networks produce 1⇥512 dimensional features at each lo-
cation. In addition to previous work, we evaluate the fol-
lowing methods keeping the training and evaluation setup
identical for a detailed comparison.

I. CNN with fully-connected layers (FC-CNN) This is
based on the features extracted from the last fully-connected
layer before the softmax layer of the CNN. The input im-
age is resized to 224⇥224 (the input size of the CNN)
and mean-subtracted before propagating it though the CNN.
For fine-tuning we replace the 1000-way classification layer
trained on ImageNet dataset with a k-way softmax layer
where k is the number of classes in the fine-grained dataset.
The parameters of the softmax layer are initialized ran-
domly and we continue training the network on the dataset
for several epochs at a smaller learning rate while monitor-
ing the validation error. Once the networks are trained, the
layer before the softmax layer is used to extract features.

II. Fisher vector with CNN features (FV-CNN) This
denotes the method of [7] that builds a descriptor using FV
pooling of CNN filter bank responses with 64 GMM com-
ponents. One modification is that we first resize the im-
age to 448⇥448 pixels, i.e., twice the resolution the CNNs
were trained on and pool features from a single-scale. This
leads to a slight reduction in performance, but we choose the
single-scale setting because (i) multi-scale is likely to im-
prove results for all methods, and (ii) this keeps the feature

extraction in FV-CNN and B-CNN identical making com-
parisons easier. Fine-tuned FV-CNN results are reported us-
ing the fine-tuned FC-CNN models since direct fine-tuning
is non-trivial. Surprisingly we found that this indirect train-
ing improves accuracy outperforming the non fine-tuned but
multi-scale results (Sect 3.2.1) .

III. Fisher vector with SIFT (FV-SIFT) We imple-
mented a FV baseline using dense SIFT features [28] ex-
tracted using VLFEAT [35]. Keeping the settings identical
to FV-CNN, the input image is first resized to 448⇥448 be-
fore SIFT features with binsize of 8 pixels are computed
densely across the image with a stride of 4 pixels. The fea-
tures are PCA projected to 80 dimensions before learning a
GMM with 256 components.

IV. Bilinear CNN model (B-CNN) We consider sev-
eral bilinear CNN models – (i) initialized with two M-nets
denoted by B-CNN [M,M], (ii) initialized with a D-Net and
an M-Net denoted by B-CNN [D,M], and (iii) initialized
with two D-nets denoted by B-CNN [D,D]. Identical to the
setting in FV-CNN, the input images are first resized to
448⇥448 and features are extracted using the two networks
before bilinear combination, sum-pooling, and normaliza-
tion. The D-Net produces a slightly larger output 28⇥28
compared to 27⇥27 of the M-Net. We simply downsam-
ple the output of the D-Net by ignoring a row and column.
The pooled bilinear feature is of size 512⇥512, which com-
parable to that of FV-CNN (512⇥128) and FV-SIFT (80 ⇥
512). For fine-tuning we add a k-way softmax layer. We
adopt the two step training procedure of [2] where we first
train the last layer using logistic regression, a convex opti-
mization problem, followed by fine-tuning the entire model
using back-propagation for several epochs (about 45 – 100
depending on the dataset and model) at a relatively small
learning rate (⌘ = 0.001). Across the datasets we found the
hyperparameters for fine-tuning were fairly consistent.

Classifier training In all our experiments once fine-
tuning is done, training and validation sets are combined
and one-vs-all linear SVMs on the extracted features are
trained by setting the learning hyperparameter Csvm = 1.
Since our features are `2 normalized the optimal of Csvm is
likely to be independent of the dataset. The trained classi-
fiers are calibrated by scaling the weight vector such that
the median scores of positive and negative training exam-
ples are at +1 and �1 respectively. For each dataset we
double the training data by flipping images and and at test
time we average the predictions of the image and its flipped
copy and assign the class with the highest score. Directly
using the softmax predictions results in a slight drop in ac-
curacy compared to linear SVMs. Performance is measured
as the fraction of correct image predictions for all datasets.

3.2. Datasets and results

We report results on three fine-grained recognition
datasets – birds [37], aircrafts [26], and cars [22]. Birds are
smaller in the image compared to aircrafts stressing the role
of part localization. Cars and birds also appear in more clut-
ter compared to aircrafts. Fig. 3 shows some examples from
these datasets. Approximate feature extraction speeds of
our MatConvNet [36] based implementation and per-image
accuracies for various methods are shown in Tab. 1.

3.2.1 Bird species classification

The CUB-200-2011 [37] dataset contains 11,788 images of
200 bird species. We evaluate our methods in two protocols
– “birds” where the object bounding-box is not provided
both at training and test time, and “birds + box” where the
bounding-box is provided both at training and test time. For
this dataset we crop a central square patch and resize it to
448⇥448 instead of resizing the image, which performed
slightly better.

Several methods report results requiring varying degrees
of supervision such as part annotation or bounding-boxes
at training and test time. We refer readers to [2] that has a
comprehensive discussion of results on this dataset. A more
up-to-date set of results can be found in [21] who recently
reported excellent performance using on this dataset lever-
aging more accurate CNN models with a method to train
part detectors in a weakly supervised manner.

Comparison to baselines Without object bounding-
boxes the fine-tuned FC-CNN [M] and FC-CNN [D]
achieve accuracy of 58.8% and 70.4% respectively. Even
without fine-tuning the FV models achieve better results
than the corresponding fine-tuned FC models – FV-CNN
[M] 61.1%, and FV-CNN [D] 71.3%. We evaluated FV
models with the fine-tuned FC models and surprisingly
found that this improves performance, e.g., FV-CNN [D]
improves to 74.7%. This shows that domain specific fine-
tuning can be useful even when early convolutional layers
of a CNN are used as features. Moreover, if FV-CNN fine-
tuning was done to directly optimize its performance, re-
sults may further improve. However, as we discussed earlier
such direct training is hard due to the difficultly in comput-
ing the gradients. We also note that the FV-CNN results
with indirect fine-tuning outperforms the multi-scale results
reported in [7] – 49.9% using M-Net and 66.7% using D-
Net. The bilinear CNN models are substantially more ac-
curate than the corresponding FC and FV models. Without
fine-tuning B-CNN [M,M] achieves 72.0%, B-CNN [D,M]
achieves 80.1%, while B-CNN [D,D] achieves 80.1% accu-
racy, even outperforming the fine-tuned FC and FV mod-
els. Fine-tuning improves performance of these models by
about 4-6% to 78.1%, 84.1% and 84.0% respectively.

Figure 3. Examples from (left) birds dataset [37], (center) aircraft
dataset [26], and (right) cars dataset [22] used in our experiments.

The trends when bounding-boxes are used at training
and test times are similar. All the methods benefit from
the added supervision. The performance of the FC and FV
models improves significantly – roughly 10% for the FC
and FV models with the M-Net and 6% for those with the
D-Net. However, the most accurate B-CNN model benefits
less than 1% suggesting a greater invariance to the location
of parts in the image.

Comparison to previous work Two methods that
perform well on this dataset when bounding-boxes are
not available at test time are 73.9% of the “part-based R-
CNN” [38] and 75.7% of the “pose-normalized CNN” [2].
Although the notion of parts differ, both these methods are
based on a two step process of part detection followed by
CNN based classifier. They also rely on part annotation
during training. Our method outperforms these methods by
a significant margin without relying on part or bounding-
box annotations. Moreover, it is significantly simpler and
faster – the bilinear feature computation using B-CNN
[M,M] runs at 87 frames/sec, while B-CNN [D,M] runs at
8 frames/sec. Compared to the part detection step which
requires thousands of network evaluations on region pro-
posals [13] our method effectively requires only two evalu-
ations and hence is significantly faster. We note that the ac-
curacy of these methods can be improved by replacing the
underlying AlexNet CNN [23] with the more accurate but
significantly slower D-Net. Recently [21] reported 82.0%
accuracy using a weakly supervised method to learn part
detectors followed by the part-based analysis of [38] using
a D-Net. However, this method relies on object bounding-
boxes for training. Another recent approach called the “spa-
tial transformer networks” reports 84.1% accuracy [19] us-
ing the Inception CNN architecture with batch normaliza-
tion [18]. This approach also does not require object or part
bounding-boxes at training time.

When bounding-boxes are used at test time all meth-
ods improve. The results of [38] improves to 76.4%. An-
other recently proposed method that reports strong results
on this setting is the “cross-layer pooling” method of [24]
that considers pairwise features extracted from two different
layers of a CNN. Using AlexNet they report an accuracy
of 73.5%. Our B-CNN model with two M-Nets method
achieves 80.4% outperforming this by a significant margin.

birds birds + box aircrafts cars

method w/o ft w/ ft w/o ft w/ ft w/o ft w/ ft w/o ft w/ ft FPS

FV-SIFT 18.8 - 22.4 - 61.0 - 59.2 - 10†

FC-CNN [M] 52.7 58.8 58.0 65.7 44.4 57.3 37.3 58.6 124
FC-CNN [D] 61.0 70.4 65.3 76.4 45.0 74.1 36.5 79.8 43
FV-CNN [M] 61.1 64.1 67.2 69.6 64.3 70.1 70.8 77.2 23
FV-CNN [D] 71.3 74.7 74.4 77.5 70.4 77.6 75.2 85.7 8
B-CNN [M,M] 72.0 78.1 74.2 80.4 72.7 77.9 77.8 86.5 87
B-CNN [D,M] 80.1 84.1 81.3 85.1 78.4 83.9 83.9 91.3 8
B-CNN [D,D] 80.1 84.0 80.1 84.8 76.8 84.1 82.9 90.6 10
Previous work 84.1 [19], 82.0 [21] 82.8 [21], 73.5 [24] 72.5 [4], 80.7 [16] 92.6 [21], 82.7 [16] †on a cpu

73.9 [38], 75.7 [2] 73.0 [7], 76.4 [38] 78.0 [4]

Table 1. Classification results. We report per-image accuracy on the CUB-200-2011 dataset [37] without (birds) and with bounding-boxes
(birds + box), aircrafts dataset [26] and cars dataset [22]. FV-SIFT is the Fisher vector representation with SIFT features, FC-CNN uses
features from the last fully connected layer of a CNN, and FV-CNN uses FV pooling of CNN filter banks [7]. B-CNN is the bilinear
model consisting of two CNNs shown in brackets. For each model results are shown without and with domain specific fine-tuning. For
FV-CNN fine-tuned results are reported using FC-CNN fine-tuned models. We report results using the M-Net [5] and D-Net [32] for
various approaches. The feature extraction speeds (frames/sec) on a Tesla K40 GPU for various methods using our MatConvNet/VLFEAT
based implementation are shown on the rightmost column. See Sect. 3 for details of the methods and a discussion of results.

Common mistakes Fig. 4 shows the top six pairs of
classes that are confused by our fine-tuned B-CNN [D,M]
model. The most confused pair of classes is “American
crow” and “Common raven”, which look remarkably simi-
lar. A quick search on the web reveals that the differences
lie in the wing-spans, habitat, and voice, none of which are
easy to measure from the image. Other commonly confused
classes are also visually similar – various Shrikes, Terns,
Flycatchers, Cormorants, etc. We note that the dataset has
an estimated 4.4% label noise hence some of these errors
may be incorrect [34].

American Crow Common Raven

Loggerhead Shrike Great Grey Shrike

Caspian Tern Elegant Tern

Acadian Flycatcher Yellow bellied Flycatcher

Brandt Cormorant Pelagic Cormorant

Glaucous winged Gull Western Gull

Figure 4. Top six pairs of classes that are most confused with
each other. In each row we show the images in the test set that
were most confidently classified as the class in the other column.

3.2.2 Aircraft variant classification

The FGVC-aircraft dataset [26] consists of 10,000 images
of 100 aircraft variants, and was introduced as a part of
the FGComp 2013 challenge. The task involves discrim-
inating variants such as the Boeing 737-300 from Boeing
737-400. The differences are subtle, e.g., one may be able
to distinguish them by counting the number of windows in
the model. Unlike birds, airplanes tend to occupy a signif-
icantly larger portion of the image and appear in relatively
clear background. Airplanes also have a smaller represen-
tation in the ImageNet dataset compared to birds.

Comparison to baselines The trends among the base-
lines are similar to those in birds with a few exceptions. The
FV-SIFT baseline is remarkably good (61.0%) outperform-
ing some of the fine-tuned FC-CNN baselines. Compared
to the birds, the effect of fine-tuning FC-CNN [D] is sig-
nificantly larger (45.0%! 74.1%) perhaps due to a larger
domain shift from the ImageNet dataset. The fine-tuned FV-
CNN models are also significantly better than the FC-CNN
models in this dataset. Once again indirect fine-tuning of
the FV-CNN models via fine-tuning FC-CNN helps by 5-
7%. The best performance of 84.1% is achieved by the B-
CNN [D,D] model. Fine-tuning leads to 7% improvement
in its accuracy.

Comparison to previous work This dataset does not
come with part annotations hence several top performing
methods for the birds dataset are not applicable here. We
also compare against the results for “track 2”, i.e., w/o
bounding-boxes, at the FGComp 2013 challenge website 1.

1
https://sites.google.com/site/fgcomp2013/results

https://sites.google.com/site/fgcomp2013/results

The best performing method [16] is a heavily engineered
FV-SIFT which achieves 80.7% accuracy. Notable differ-
ences between our baseline FV-SIFT and theirs are (i) larger
dictionary (256! 1024), (ii) Spatial pyramid pooling (1⇥1
! 1⇥1 + 3⇥1), (iii) multiple SIFT variants, and (iv) multi-
scale SIFT. The next best method is the “symbiotic seg-
mentation” approach of [4] that achieves 72.5% accuracy.
However, this method requires bounding-box annotations at
training time to learn a detector which is refined to a fore-
ground mask. The B-CNN models outperform these meth-
ods by a significant margin. The results on this dataset show
that orderless pooling methods are still of considerable im-
portance – they can be easily applied to new datasets as they
only need image labels for training.

3.2.3 Car model classification

The cars dataset [22] contains 16,185 images of 196 classes.
Categories are typically at the level of Make, Model, Year,
e.g., “2012 Tesla Model S” or ‘2012 BMW M3 coupe.”
Compared to aircrafts, cars are smaller and appear in a
more cluttered background. Thus object and part localiza-
tion may play a more significant role here. This dataset was
also part of the FGComp 2013 challenge.

Comparison to baselines FV-SIFT once again does
well on this dataset achieving 59.2% accuracy. Fine-tuning
significantly improves performance of the FC-CNN models,
e.g., 36.5%! 79.8% for FC-CNN [D], suggesting that the
domain shift is larger here. The fine-tuned FV-CNN mod-
els do significantly better, especially with the D-Net which
obtains 85.7% accuracy. Once again the bilinear CNN mod-
els outperform all the other baselines with the B-CNN [D,
M] model achieving 91.3% accuracy. Fine-tuning improves
results by 7-8% for the B-CNN models.

Comparison to previous work The best accuracy
on this dataset is 92.6% obtained by the recently proposed
method [21]. We also compare against the winning meth-
ods from the FGComp 2013 challenge. The SIFT ensem-
ble [16] won this category (during the challenge) achieving
a remarkable 82.7% accuracy. The symbiotic segmentation
achieved 78.0% accuracy. The fine-tuned B-CNN [D,M]
obtains 91.3% significantly outperforming the SIFT ensem-
ble, and nearly matching [21] which requires bounding-
boxes during training. The results when bounding-boxes
are available at test time can be seen in “track 1” of the
FGComp 2013 challenge and are also summarized in [16].
The SIFT ensemble improves significantly with the addition
of bounding-boxes (82.7% ! 87.9%) in the cars dataset
compared to aircraft dataset where it improves marginally
(80.7%! 81.5%). This shows that localization in the cars
dataset is more important than in aircrafts. Our bilinear

models have a clear advantage over FV models in this set-
ting since it can learn to ignore the background clutter.

3.3. Low dimensional bilinear CNN models

The bilinear CNN models that are symmetrically initial-
ized will remain symmetric after fine-tuning since the gra-
dients for the two networks are identical. Although this
is good for efficiency since the model can be implemented
with just a single CNN evaluation, this may be suboptimal
since the model doesn’t explore the space of solutions that
can arise from different CNNs. We experimented with sev-
eral ways to break the symmetry between the two feature
extractors. The first is “dropout” [23] where during train-
ing a random subset of outputs in each layer are set to zero
which will cause gradients of the CNN to differ. However,
we found that this led to 1% loss in performance on birds.
We also experimented with a structured variant of dropout
where we randomly zero out the rows and columns of the
the pooled bilinear feature (AT B). Unfortunately, this also
performed 1% worse. We hypothesize that the model is
stuck at a local minima as there isn’t enough training data
during fine-tuning. On larger datasets such schemes may be
more important.

Our second idea is to project one of the CNN outputs
to a lower dimension breaking the symmetry. This can be
implemented by adding another layer of the CNN with a
convolutional filter of size 1⇥1⇥N⇥D where N is the num-
ber of channels in the output of the CNN and D is the pro-
jected dimension. We initialize the parameters using PCA,
projecting the 512 dimensional output of the M-Net to 64.
Centering is absorbed into a bias term for each projection.

This projection also reduces the number of parameters
in the model. For the B-CNN [M,M] model with k classes
there are 512⇥512⇥k parameters in the classification layer.
With the projection there are only 512⇥64⇥k parameters in
the classification layer, plus 512⇥64 parameters in the pro-
jection layer. Thus, the resulting classification function C
can also be viewed as a “bilinear classifier” [29] – a product
of two low-rank matrices.

However, PCA projection alone worsens performance.
Fig. 5 shows the average precision-recall curves across the
200 classes for various models. On birds the mean average
precision (mAP) of the non fine-tuned model w/o PCA is
72.5% which drops to 72.0% w/ PCA. Since the projection
is just another layer in the CNN, it can be jointly trained
with the rest of the parameters in the bilinear model. This
improves mAP to 80.1% even outperforming the original
fine-tuned model that achieves 79.8%. Moreover the pro-
jected model is also slightly faster. Finally, we note that
when PCA was applied to both the networks the results
were significantly worse even with fine-tuning suggesting
that sparse outputs are preferable when pooling.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

72.5 (m,m)
79.8 (m,m)+ft

72.0 (m,m
64

pca)

80.1 (m,m
64

pca)+ft

Figure 5. Low dimensional B-CNN (M,M) models.

4. Discussion

One of the motivations for the bilinear model was the
modular separation of factors that affect the overall appear-
ance. But do the networks specialize into roles of local-
ization (“where”) and appearance modeling (“what”) when
initialized asymmetrically and fine-tuned? Fig. 6 shows the
top activations of several filters in the D-Net and M-Net of
the fine-tuned B-CNN [D, M] model. These visualizations
suggest that the roles of the two networks are not clearly
separated. Both these networks tend to activate strongly on
highly specific semantic parts. For example, the last row
of D-Net detects “tufted heads”, which can be seen as ei-
ther part or a feature (visualizations on other datasets can
be found in the supplementary material).

The above visualizations also suggests that the role of
features and parts in fine-grained recognition tasks can be
traded. For instance, consider the task of gender recogni-
tion. One approach is to first train a gender-neutral face de-
tector and followed by a gender classifier. However, it may
be better to train a gender-specific face detector instead. By
jointly training fA and fB the bilinear model can effectively
trade-off the representation power of the features based on
the data. Thus, manually defined parts not only requires sig-
nificant annotation effort but also is likely to be sub-optimal
when enough training data is available.

Our bilinear CNN models had two feature extractors
whose processing pathways separated early, but some of
the early processing in the CNNs may be shared. Thus one
can design a more efficient architecture where the feature
extractors share the first few stages of their processing and
then bifurcate to specialize in their own tasks. As long as the
structure of the network is a directed acyclic graph standard
back-propagation training applies. Our architecture is also
modular. For example, one could append additional feature
channels, either hand-crafted or CNNs, to the either fA or
fB only update the trainable parameters during fine-tuning.
Thus, one could train models with desired semantics, e.g.,
color, describable textures [6], or parts, for predicting at-

D-Net M-Net

Figure 6. Patches with the highest activations for several filters of
the fine-tuned B-CNN (D, M) model on CUB-200-2011 dataset.

tributes or sentences. Finally, one could extend the bilinear
model to a trilinear model to factor out another source of
variation. This could be applied for action recognition over
time where a third network could look at optical flow.

5. Conclusion

We presented bilinear CNN models and demonstrated
their effectiveness on various fine-grained recognition
datasets. Remarkably, the performance is comparable to
methods that use the similar CNNs and additionally rely
on part or bounding-box annotations for training. Our hy-
pothesis is that our intuition of features that can be extracted
from CNNs are poor and manually defined parts can be sub-
optimal in a pipelined architecture. The proposed models
can be fine-tuned end-to-end using image labels which re-
sults in significant improvements over other orderless tex-
ture descriptors based on CNNs such as the FV-CNN.

The model is also efficient requiring only two CNN eval-
uations on a 448⇥448 image. Our MatConvNet [36] based
implementation of the asymmetric B-CNN [D,M] runs at
8 frames/sec on a Tesla K40 GPU for the feature extrac-
tion step, only a small constant factor slower than a sin-
gle D-Net and significantly faster than methods that rely
on object or part detections. The symmetric models are
faster since they can be implemented with just a single
CNN evaluation, e.g., B-CNN [M,M] runs at 87 frames/sec,
while the B-CNN [D,D] runs at 10 frames/sec. The source
code for the complete system will be made available at
http://vis-www.cs.umass.edu/bcnn

Acknowledgement This research was supported in part by
the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA)
under contract number 2014-14071600010. The GPUs used
in this research were generously donated by NVIDIA.

http://vis-www.cs.umass.edu/bcnn

References

[1] L. Bourdev, S. Maji, and J. Malik. Describing people: A
poselet-based approach to attribute classification. In ICCV,
2011. 1

[2] S. Branson, G. V. Horn, S. Belongie, and P. Perona. Bird
species categorization using pose normalized deep convolu-
tional nets. In BMVC, 2014. 1, 2, 4, 5, 6

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In ECCV.
2012. 2, 3

[4] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic seg-
mentation and part localization for fine-grained categoriza-
tion. In ICCV, 2013. 6, 7

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. In BMVC, 2014. 2, 4, 6

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and
A. Vedaldi. Describing textures in the wild. In CVPR, 2014.
3, 8

[7] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and description. In CVPR, 2015. 1, 2, 4,
5, 6

[8] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints. In
ECCV Workshop on Stat. Learn. in Comp. Vision, 2004. 2, 3

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 2009. 1, 3

[10] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
vation feature for generic visual recognition. In ICML, 2013.
3

[11] R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and
L. S. Davis. Birdlets: Subordinate categorization using volu-
metric primitives and pose-normalized appearance. In ICCV,
2011. 1

[12] K. Fragkiadaki, P. Arbeláez, P. Felsen, and J. Malik. Learn-
ing to segment moving objects in videos. In CVPR, 2015.
2

[13] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 3, 5

[14] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
In ECCV, 2014. 2

[15] M. A. Goodale and A. D. Milner. Separate visual path-
ways for perception and action. Trends in neurosciences,
15(1):20–25, 1992. 2

[16] P.-H. Gosselin, N. Murray, H. Jégou, and F. Perronnin. Re-
visiting the fisher vector for fine-grained classification. Pat-
tern Recognition Letters, 49:92–98, 2014. 6, 7

[17] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In CVPR, 2015. 2

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 5

[19] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu. Spatial transformer networks. CoRR,

abs/1506.02025, 2015. 5, 6
[20] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating

local descriptors into a compact image representation. In
CVPR, 2010. 1, 2, 3

[21] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained
recognition without part annotations. In CVPR, 2015. 2,
5, 6, 7

[22] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object repre-
sentations for fine-grained categorization. In 3D Represen-
tation and Recognition Workshop, at ICCV, 2013. 5, 6, 7

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 5, 7

[24] L. Liu, C. Shen, and A. van den Hengel. The treasure beneath
convolutional layers: Cross-convolutional-layer pooling for
image classification. In CVPR, 2015. 2, 5, 6

[25] D. G. Lowe. Object recognition from local scale-invariant
features. In ICCV, 1999. 1

[26] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013. 5, 6

[27] O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A
compact and discriminative face track descriptor. In CVPR,
2014. 3

[28] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. In ECCV,
2010. 1, 2, 3, 4

[29] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Bilinear clas-
sifiers for visual recognition. In NIPS. 2009. 2, 7

[30] A. S. Razavin, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn
features off-the-shelf: An astounding baseline for recogni-
tion. In DeepVision workshop, 2014. 3

[31] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, 2014. 2

[32] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
2, 4, 6

[33] J. B. Tenenbaum and W. T. Freeman. Separating style
and content with bilinear models. Neural computation,
12(6):1247–1283, 2000. 2

[34] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry,
P. Ipeirotis, P. Perona, and S. Belongie. Building a bird
recognition app and large scale dataset with citizen scientists:
The fine print in fine-grained dataset collection. In CVPR,
2015. 6

[35] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.

vlfeat.org/, 2008. 4
[36] A. Vedaldi and K. Lenc. MatConvNet – Convolutional Neu-

ral Networks for MATLAB. In ACMMM, 2015. 5, 8
[37] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, CalTech, 2011. 1, 2, 5, 6

[38] N. Zhang, J. Donahue, R. Girshickr, and T. Darrell. Part-
based R-CNNs for fine-grained category detection. In
ECCV, 2014. 1, 5, 6

[39] N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for
sub-category recognition. In CVPR, 2012. 1

http://www.vlfeat.org/
http://www.vlfeat.org/

