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ABSTRACT

SUPPORT VECTOR CLASSIFICATION OF IMAGES
WITH LOCAL FEATURES

MAY 2005

MATTHEW B. BLASCHKO
B.S., COLUMBIA UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik G. Learned-Miller

The support vector framework is a general method for classification derived from
inner products over feature vectors. The framework works by constructing maximal
margin separating hyperplanes between classes. A key feature of this approach is that
it allows for the replacement of strict inner products in the original feature space with
Mercer kernels, functions that are equivalent to inner products between projections of
the original vector into a higher, possibly infinite dimensional feature space. Though
the data may not be well separated in the lower dimensional space, their projection
into higher dimensions may be.

Kernels are especially interesting in their application to mathematical objects
that do not lend themselves to be explicitly represented as a single vector in a finite
dimensional space. Recent progress in the field of Computer Vision has relied on
representations of images that consist of unordered sets of features that describe

local image regions. I explore here several recently developed kernels between sets

vi



of vectors and develop a common probabilistic theory to explain their design. This
theory is based on a principled measure of similarity between the vector sets with few
assumptions regarding structure in the data. Results are shown for several image data
sets, including a challenging real-world marine science application. Results exceeding
the current state of the art for bag of features representations are achieved with a
newly proposed family of kernels. The best results to date on the VPR marine science

data set are achieved with a kernel that combines local and global visual information.
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CHAPTER 1
INTRODUCTION

In object recognition, the two main components of feature extraction and classi-
fier induction both have central importance. Vidal-Naquet and Ullman have shown
that generic features with complex classifier induction and informative features with
linear classification can both perform well on object recognition tasks [44]. Appro-
priate feature representations ease the burden on the classifier by providing greater
class separation, and minimize structural risk, making it less likely that the classifier
will overfit the data [43]. In some cases, features that do not lend themselves to
representation in a single vector can add significant discriminability, but algorithms
must be invented or adapted to account for the structure of the feature data.

Most object recognition systems tend to use either global image features, which
describe an image as a whole, or local features, which represent image patches at inter-
est points in the image. Global features have the ability to generalize an entire object
with a single vector. Consequently, their use in standard classification techniques is
straightforward. Local features, on the other hand, are computed at multiple points
in the image and are consequently more robust to occlusion and clutter. However,
they may require specialized classification algorithms to handle cases in which there
are a variable number of feature vectors per image.

In designing classification algorithms for instances represented by multiple vec-
tors, one could consider several approaches, each giving a different level of abstrac-
tion. Existing algorithms have often been based on bags of vectors, in which objects

are represented by unordered sets of vectors. This is actually quite a restrictive ap-



proach as information regarding the location of the vectors in the image plane is
completely ignored. Well designed classification systems that take into account this
spatial information will likely perform better than one based solely on the bag of
vectors approach. This work, however, focuses almost exclusively on approaches that
do not take into account spatial information. This choice is based on the assertion
that the techniques explored in this thesis can be the basis for systems that utilize
additional information apart from this abstraction. By focusing only on the sets of
vectors themselves, we develop a probabilistic framework for a principled comparison
between two sets of vectors, which forms the basis of a comparison between two im-
ages. We then show how this framework can be extended to add additional sources
of discriminative information.

Specifically, this work explores kernels between sets of vectors. A kernel is a func-
tion that relates two inputs, usually an indication of their similarity, and is central to
several machine learning algorithms including Support Vector Machines (Section 1.2).
By specifying a kernel between sets of vectors that is appropriate to the learning
problem posed by local image features, we leverage the extensive existing literature

on kernel-based learning (e.g. [39]).

1.1 Local Features

In practice, the generation of local features is commonly a two part process. The
first requires an interest point detector to select points within the image that are
located at visually distinctive patches. The second step generates a description of
the region around that point. The data produced in these two steps consists of the
location and description of the image patches around the interest points.

Interest point detectors look for visually distinctive regions in an image. The
Harris corner detector is a simple example of such a detector, though a wide variety

of choices exist in the literature [23, 33, 31, 30]. The most important aspect of an



interest point detector is repeatability, i.e. that the detector will select the same point
on an object surface irrespective of minor changes in lighting and pose [35]. Interest
point detectors typically detect features across different scales, and may incorporate
affine invariance. In this case, the interest point detector provides information about
the scale and normalizing transformation in addition to location within the image.
Local regions, most simply, could be described by a vector consisting of the in-
tensity values around the image patch. Often, however, image patches are instead
represented by statistics of the image gradient. Commonly proposed feature descrip-
tors are histograms of the gradient orientation, or of the curvature of the intensity
surface [37, 30]. Affine invariance can be achieved by selecting affine invariant statis-
tics, or by transforming the image patch by the affine transformation estimated in
the interest point detection phase [34]. Despite the variety of approaches in the in-
terest point detection stage, classification algorithms based on local features tend to

be influenced more by the descriptor than by the interest point detector [35].

1.1.1 SIFT Features

The Scale Invariant Feature Transform (SIFT) was originally proposed by Lowe
in [29] and refined in [30]. The sift algorithm consists of four parts: (1) scale space
extrema detection, (2) keypoint localization, (3) orientation assignment, and (4) key-
point description. The first step efficiently searches across scale space to find peaks

in the gradient using a difference-of-Gaussian function

D(:c,y,a) = (G(a:,y, kO’) —G(CL',y,O'))*I(iL",y) (11)

where £ is a constant multiple indicating the sampling rate in scale, % is the convo-
lution operation in x and y, and G is a two dimensional Gaussian. As Lowe points
out, the difference-of-Gaussian is a close approximation to the Laplacian of Gaus-

sian. Extrema are sampled at fixed scales for efficiency. The second step localizes



(a) Original image. (b) SIFT features locations are shown
by the tail of the arrows, scale is shown
by the length, and dominant orientation
by the direction.

Figure 1.1. Visualization of SIFT features in a marine science image.

keypoints to sub-pixel accuracy and throws out points that are not stable, leaving us
with a candidate set of interest points. In the third step, dominant orientations of the
keypoints are found based on the surrounding image patch. The image patches are
rotated and scaled appropriately eliminating sensitivity to similarity transformations.
The fourth step, identified by Mikolajczyk and Schmid to be the most important [35],
is discussed in the following paragraph.

The final stage of the SIFT algorithm generates a description of the image patch
based on the image gradient at the normalized local image patch. The goal is to create
a representation that is simultaneously distinctive (i.e. image patches with different
appearances will be placed far apart in feature space), while being robust to changes
in illumination and camera position. Each patch is described by a three-dimensional
histogram of gradient orientations, where two dimensions are the x and y location
relative to the image patch, and the third dimension is the orientation itself. Lowe

chooses 16 spatial bins, and 8 orientation bins for a total feature length of 128. The



histogram is normalized with a Gaussian weighting favoring the center of the 4 by
4 grid of spatial locations. A visualization of SIFT features on an example image is
given in Figure 1.1. Improvements have been suggested that consist of using a log-
polar spatial histogram rather than a rectangular histogram [35], or of using PCA to
project the image patch down to a lower dimension while retaining distinctiveness of
the image patch [24]. Nevertheless, SIFT features as described here are an extremely
popular representation that has performed well in side by side comparisons of local
feature descriptors [35]. Interestingly, clustering SIFT features tends to group visual

primitives that correspond to the same object part [12].

1.2 Support Vector Machines

Support Vector Machines (SVMs) are classifiers that separate two class problems!
with a maximum margin hyperplane [39]. In the case that the data are separable,
the algorithm computes a hyperplane that separates the data while maximizing its
distance to the nearest data point. A mechanical analogy is that two hyperplanes
that are constrained to be parallel are placed between the exemplars of the two classes
with a spring pushing them apart. These two hyperplanes cannot pass through any
exemplar from either class. Once the spring has expanded as far as possible, the
plane midway between the two planes and parallel to them is the decision boundary.
This is also the plane that bisects the shortest line segment between the convex hulls
of the two classes. In the case that the data are not separable, we introduce slack
variables, &;, to allow for some incorrectly classified exemplars.

More formally, the procedure for computing the maximizing hyperplane defined

by

! The extension to multi-class problems is explored in many works, many of which are independent
of the Support Vector Framework. Some approaches include one vs. rest classification [38], pairwise
classification [26], and error correcting output codes [10].



<w,x>+b=0 (1.2)

where w € RP, b € R, is given below, and < -,- > is the inner product. We define
Z1, T2, ---ZTm to be the exemplars, and y; € {—1,1} the class labels. w is given in

terms of its expansion
m
w= Zaiy,-xi (1.3)
i=1

by the following quadratic programming problem:

minimizeg , s <w,w>+CEY" & (1.4)
subject to yi(<w,x; >+b)>1-&, i=1,...,m (1.5)
and >0, i=1,...,m (1.6)

We can in fact maximize the Lagrangian dual, in which the &; disappear:

maximizeaeRm Z:r;l o — % Z:il Z;n:l o005 Y Y, < x;, Z; > (17)
subject to 0<a;<Sforalli=1,...,m, (1.8)
and Z:il QY = 0. (19)

where each «; is a Lagrangian multiplier. The decision function itself can then be
written as a weighted sum of inner products where the weights correspond to the

Lagrangian multipliers

m
f(z) = sgn(z yio; < x,x; > +b) (1.10)

i=1
For additional details on the formulation of the quadratic programming problem, the
reader is referred to [39]. Burges also provides an accessible tutorial introduction to

Support Vector Machines [6].



A key feature of this framework is that the inner product, < z;,z; > in equa-
tion (1.7) can be replaced with a functional, k(-, ), that is equivalent to a dot prod-
uct in some space, k(z;, ;) =< ®(z;), ®(x;) >. The choice k(z;,z;) =< z;,x; > is
the simplest such assignment where we place a separating hyperplane in the origi-
nal space, but in general, the pre-image in the original feature space of the decision

boundary need not be linear. As a simple example, imagine that our data are in R2.

A mapping
i
®(z) = | v2zi7y (1.11)
x5
corresponds to a simple computation?
k(zi, z;) = (z; - z;)° (1.12)

When used in a Support Vector Machine, the kernel will find a separating hyper-
plane in the transformed space, which consists of the power set of . While there
is no linear solution to the XOR problem (figure 1.2), the second degree polynomial
kernel (equation (1.12)) is linearly separable in the transformed space. Furthermore,
the simplified computation allows us to efficiently calculate this hyperplane without
explicitly calculating the transformation, ®. Similarly, we replace the inner product
with a kernel evaluation in the decision function (equation (1.10)).

We can see that our choice of kernel allows us to add non-linearity to a decision
function by computing a linear decision boundary in a transformed space. This space
is often higher dimensional than the original input feature space. For example, in
equation (1.11), vectors in R?> have been transformed to lie in R®. Mercer’s theo-

rem tells us when a kernel is equivalent to an inner product in a transformed space

2In this case, the computation is a function of an inner product, but this is not necessary in
general.



(a) The XOR problem is not linearly (b) The data are separable in the em-

separable. Any separating hyperplane bedding space. Note that the two ex-

approach will fail on this data. amples of each class both mapped to
the same point due to symmetries in the
data.

(c) The preimage of the second degree
polynomial kernel is hyperbolic because
noise was added to the coordinates prior
to computation. In the limit, this will
exactly partition the space into quad-
rants.

Figure 1.2. The XOR problem is not linearly separable in the feature space, but is
separable in the embedding space.



without requiring us to explicitly formulate the transformation as we did in equa-
tion (1.11). Mercer’s theorem states that to guarantee that k(z1,z2) is equivalent to
< ®(z1), ®(z2) > (i.e. that it is an inner product in some space), it is necessary and

sufficient that the condition

/C/Ck(wl,xz)g(wl)g(azz)d:cldwg >0 (1.13)

be valid for all g € Ly(C), where C is a compact subset of R* [43]. Simply stated,
any positive definite function is equivalent to a dot product in some space.

Several important classes of Mercer kernels have been developed for vector data.
We have seen an example of a polynomial kernel in the preceding paragraphs. In
general,

kp(zi, zj) = (< x4,z > +1)P (1.14)

is the pth degree polynomial kernel. The degree of the polynomial determines which
powers of our original space will be represented in the higher dimensional space.
Data that are not separable in low order terms of their polynomial expansions may
be separated in higher order terms. We add 1 to the dot product in equation (1.14)
in order to incorporate the lower order terms in our space as well. It is important to
note, however, that it is quite easy to overfit as we can make very complex decision
boundaries by setting the exponent too high.

Another important example of a family of Mercer kernels is the Gaussian radial
basis function (RBF) kernel. A Gaussian RBF kernel returns to a constant factor the
evaluation of a zero-mean Gaussian at a point given by the difference between two

vectors.

ko (i, ;) = e leim2il*/20°, (1.15)

The degree of smoothing, o, determines at what scale we compare the data.



CHAPTER 2
APPROACHES TO KERNELS WITH LOCAL FEATURES

Recall that we are interested in characterizing images by possibly varying numbers
of local features. To compare images, we would like to consider kernel functions that
compare such sets of local features in two images. Recently, various techniques have
been proposed for kernels between sets of vectors [15, 25, 46, 45, 17]. Of these, kernel
principal angles [46], the Bhattacharyya kernel [25], and the matching kernel [45] have
received some attention. Side by side comparisons between some of these approaches
with respect to image recognition are available in [14] and [17]. Grauman and Darrell
also formulate a fast algorithm for computing a kernel that bears some resemblance
to existing kernels [17]. We describe each of the major techniques in the following
sections, and evaluate some of their characteristics in the context of local image

features.

2.1 Multi-Instance Kernels

Classification algorithms for multiple vectors include those generated for the multi-
instance learning problem [11, 15|, which was developed to predict the behavior of
candidate chemicals for pharmaceuticals. This formulation, however, states that a
set of vectors is considered to belong to a class if at least one member vector is a
member of the class; only one vector need indicate membership while the rest can
be viewed as noise, or irrelevant. Local features for image class recognition, on the
other hand, can make use of many vectors in the set at once. Each vector ostensibly

corresponds to a component of the object to be classified, and it is this collection of

10



components that indicates class membership. In classifying objects as belonging to a
class, the presence of image features from many different points on the object surface
are indicative of class membership, not the presence of only one of these features
alone. By utilizing the set of vectors in its entirety, we can construct classifiers that
are robust to partial occlusion and class variability. Consequently this kernel is not
appropriate to the application of image classification as many visual cues should be

employed rather than just one.

2.2 Kernel Principal Angles

Kernel principal angles was among the first kernels between sets of vectors to be
proposed [46]. This technique computes a kernel based on principle angles between
the subspaces spanned by the projections of the vectors in embedding space, ®(z;).
Because the subspaces are constrained to be at most dimensionality equal to the
number of vectors in the space, the authors restrict the kernel to vector sets of equal

cardinality V. The kernel itself is defined to be

k(I,I') = H cos(8;)? (2.1)

where 6; is the ith principal angle between the subspaces. The primary weaknesses
of the restriction to sets of equal cardinality, and the relatively poor performance in
comparative studies [14] suggest that this kernel is of limited use to image classifica-

tion.

2.3 Bhattacharyya Kernel
The Bhattacharyya kernel was proposed by Kondor and Jebara to parametrically
represent the data in each set of vectors, and then use Bhattacharyya’s affinity (see

section 3.1 for more details) between those parametric representations as the ker-

11



nel [25]. Specifically, kernel PCA [40] is used to fit a Gaussian to a set of vectors in
an embedding space induced by the choice of an additional separate kernel, known as
a minor kernel. The authors show how to compute Bhattacharyya’s affinity between
Gaussians in closed form, which allows for exact computation of the kernel. However,
this requires several matrix inversions, and the technique is among the most compu-
tationally demanding, being cubic in the number of vectors per set while most other
techniques are quadratic, making it impractical for large sets of vectors despite its

relatively high performance in comparative tests [14].

2.4 Matching Kernel

The Matching Kernel was proposed in [45] to handle sets of vectors resulting from
interest point detectors and local image descriptors. A set of features results from
the local descriptors which are then treated as sets of vectors describing the image.
The kernel consists of a minor kernel, which is computed between individual vectors,
and a function for combining the results of the minor kernel evaluations for the entire

set. The function that computes the overall result takes the form

k(I,I') = %[E(I,I') + k(I', 1)] (2.2)
k(I,I') = Z]I}a’a)’c o(xs, x5) (2.3)

where I and I' are sets of vectors corresponding to objects, z; and z’; are individual

vectors in those sets, respectively, N is the number of vectors in 7, and ¢(x;, z}) is
the minor kernel. As [14] points out, equation (2.3) is not in fact positive definite due
to the max operation, and so is not a Mercer kernel despite the claim in the original
paper. Nevertheless, reported results in [45] and [14] indicate that this technique can

be successfully applied to simple object recognition tasks.
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2.4.1 Choice of Minor Kernel

Thus far we have not discussed what the choice of a minor kernel should be.
There have been a variety of choices for minor kernels in the literature. Some of
these do not seem to fit basic intuitive requirements for such a kernel, such as the
fact the maximum kernel value for a point z; be given with z; = z;. In the case
of a dot product minor kernel, for a fixed query point x = {z1,...,z,}, ¢(x,¥y), a
function of y, is a hyperplane that passes through the origin. Intuitively, we would
like max;—1,.. N ¢(z;, x;) to select a value for j that corresponds to a vector close to
x; in that space. Use of a simple dot product, however, will favor points that are
infinitely far from z;.

If we instead modify equation (2.3) to be

N 1
k(1,1 = ~ > (@i, 7) (2.4)
i=1
where
ji = argmin ||z; — 27| (2.5)
j=1,..,N'

we constrain ourselves to matching points that are similar in the sense that they
are close together (we can in fact use a metric in an induced space [5]). However,
this technique is implicitly dependent on the choice of the origin, and the result
of averaging dot products is difficult to interpret from the perspective of spatial
similarity of a set of vectors (Figure 2.1). Therefore, the minor kernel itself must act
as a similarity measure in equation (2.3). Choosing a radially symmetric kernel that
is monotonically decreasing as ||z; — 2| results in equations (2.3) and (2.4) being
equivalent. The result of its evaluation can be thought of as the likelihood that the
two vectors match each other in that space.

A special case where a simple dot product is appropriate is the case where the

data are normalized. In this case, the data are constrained to lie on a hypersphere

13



Figure 2.1. < {1,1}7 {z,y}T > is plotted along with an iso-curve of ||{1,1}T —
{z,y}T||, which result in a plane and a cylinder respectively. The averaging operation
in equation (2.4) is difficult to interpret as we would expect to have equal contribu-
tion along the iso-curve. The equation is not coordinate free as changing the origin
will result in different relative values for points selected by the argmin operation in
equation (2.5)

and the dot product is in fact the cosine of the angle between two vectors. The
cosine of the angle is radially symmetric with respect to a point on the manifold, and
we in fact arrive at a radially symmetric, monotonically decreasing similarity metric,
though we have no control over the scale at which we compare the data. Without
such a geometric constraint, we must take greater care with our choice of kernel.

To explicitly interpret the minor kernel as representing the likelihood of a match
between vectors, the kernel takes the shape of a density over the space. If we rely on
the feature space, or a transformation of that space, to separate the data, then we
require that the kernel have density inversely proportional to a monotonic function of
a distance metric in the space. A Gaussian RBF kernel is in fact to a constant factor
a density over the original feature space that has density inversely proportional to a

monotonic function of distance.
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2.5 Pyramid Match Kernel

Another recently proposed kernel between sets of vectors is the Pyramid Match
Kernel [17]. Barla et al. first proposed histogram overlap as a kernel between im-
ages [1]. Grauman and Darrell extend this idea to a weighted multi-resolution his-
togram intersect measure over local features [17]. In order to have a fixed base scale
for the histogram, they assume that the data are first scaled so that there is a mini-
mum inter-vector distance of 1, and that the data are bounded by a sphere of known
radius!, r. Beginning with a bin width of %, each subsequent level in the pyramidal
histogram has a bin width double the length of the previous and has half the number

of bins. The kernel itself is defined to be

~

Ir
k1) = L0 (2.6)
VLT -k, 1)
. [log 27]
k(I, II) = Z a; (|H1,i N HI’,i‘ — ‘HI,i—l N HI’,i—l‘) (27)
=0

where «; are weights for each histogram resolution, and |H;; N Hy 4| is the histogram

intersect between the images calculated with a bin width of 2¢,
[Hpi NHpgl = min(H{Y, HiY) (2.8)
m

At the base level, every feature falls into its own bin due to the bound on inter vector
distance, and at level [log2r], all of the features in each image fall into just one bin.
The setting for the weights

1
. 2.
= 5 (2.9)

!Note that SIFT features are typically computed with integer arithmetic in order to trade quanti-
zation error for speed, giving a bound on the inter vector distance. Additionally, they are normalized
and therefore lie on a hypersphere of known radius [30].

15



was proposed by Grauman and Darrell, though other weightings that are decreasing
as ¢ may be appropriate. At each level, a certain number of features in the respective
images are close enough to fall into the same bin. The features that are close enough
in bin ¢ but not close enough in bin # — 1 each contribute o; to the similarity measure.
The previous matches are subtracted so that features that have already been matched
are not counted multiple times. Additionally, the kernel is normalized by the self
similarity of the images in order to avoid favoring images with a larger number of
features.

Each of the kernels described in this chapter have some intuitive basis, but it is
unclear where they are similar to one another and where they differ, and if there is an
overarching justification for choosing one over another. The next section introduces
a probabilistic framework for understanding the kernels with respect to the feature

space.
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CHAPTER 3
A PROBABILISTIC FRAMEWORK

Kernels between sets of vectors indicate a degree of similarity between two point
clouds. This chapter describes a probabilistic framework for describing the similarity
of point clouds based on the estimation of an underlying distribution for each set of
vectors. This estimation is done non-parametrically, and the final kernel is computable

in closed form.

3.1 Probability Product Kernels

A general approach for generating a kernel between distributions over observations

was outlined in [22]. They propose probability product kernels of the form

k(p,p') = / p(z)°p (z)°dx (3.1)

where p and p’ are distributions that represent the two objects and p is a parameter
of the family of kernels. There are two special cases of interest for p: Bhattacharyya’s

affinity between distributions [2]

kp,p') = / Vr@V7 @)dx (3.2)

and the expected likelihood kernel

k(p,p) = / p(e)p'(z)dz = Eplp'()] = Ey[p(z)] (3:3)
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While Bhattacharyya’s affinity between distributions is equal to one when the two
distributions are identical, the expected likelihood kernel is unbounded for equal
distributions, and favors distributions with low entropy.

Jebara, Kondor, and Howard derive closed form expressions for many parametric

forms for p(x) [22]. Of particular interest is that of the Gaussian distribution:

o (VP — 1 ‘21‘1/2
oo PP = Gy 707 [l

—2(WTE TS~y —ptT st pt) (3.4)

where

= (l4x ! (3.5)

and

pl=S"p+ 2y (3.6)

The expected likelihood kernel applied to two spherical Gaussians of equal variance

is equal to
1
(47o2)D/?

k(p,p') = eI —nl?/(402) (3.7)

which [22] point out is in fact equivalent to the Gaussian RBF kernel to a constant
factor. Although one might argue that the expressive capacity of single Gaussians
is overly restrictive!, we will see in the following sections that the kernel between

Gaussians is important in the derivation of more sophisticated results.

3.2 Kernel Density Estimation
Because our setting consists of images represented as sets of vectors, we need

to estimate a distribution over the space in which the vectors lie. Kernel density

Tn fact, for the more restrictive formulation in equation (3.7) we have no more information than
were we to represent the data by their centroid.
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estimation estimates distributions from sampled data without assuming a parametric

form [13, 42]. To estimate a density at a specific point, z, we use the formula

p(z) = —— (3.8)

where dV is a volume around the point, k& is the number of samples that fall into the
volume, and N is the number of points sampled. A window function, ¢, is chosen to
precisely define the region around x from which to construct the volume, and a scale
parameter h is introduced to vary the width of the window. The number of samples,

k, that falls into a region defined by this window is

k:z]:;¢<w;m> (3.9)

We restrict ¢ to be normalized and non-negative, i.e. a distribution. Substitution

into equation (3.8) yields

1 N

o) =+ 3 0 (552) (3.10)

An interpretation of dV is that it represents the scaling factor that normalizes the

window dependent on the dimensionality of the space:

/% ("”;lx> dz = /¢(u)du= 1 (3.11)

We will assume that our window functions, ¢, are normalized so we will not explicitly

account for ﬁ in subsequent equations. Of particular interest for our purposes is the

Gaussian kernel, defined by?

2We slightly abuse notation here by treating ¢ as a function of one variable above (as in the
kernel density estimation literature), and as a function of two variables below. In practice, this
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1 M —zl12 /202
¢(zi,x) = (Emo?) les—all*/20 (3.12)
3.2.1 Probability Product Kernels Applied to Kernel Density Estimates
We now consider what happens when we use the probability product kernel to
compare two distributions that have been estimated from samples using kernel density

estimation:

ko) = | (% 3 ol x)> - (Ni 3ol w)) do (313)

where ¢(x;,x) is given as in equation (3.12). Rearranging terms in equation 3.13 we

arrive at

o) = L L3S [ b 0)- 8(z), o (3.14)

i=1 j=1

Since the inner integral is simply the expected likelihood kernel between Gaussians,

the end result is

N N/

1 —llz;—=z; 402
k(p,p') _ N 471-02 T Zze ||} —:]|? / (40%) (3.15)

i=1 j=1

when the Gaussian is isotropic and equal variance. Kernels of this form were an
intermediate step in the development of multi-instance kernels [15] but without a
probabilistic justification. More recently, this form was suggested for mixtures of
exponential distributions of which Gaussian kernel density estimation is a special
case [21].

Bhattacharyya’s affinity between Gaussians has intuitive appeal due to that it is

equal to 1 when the two distributions are identical, and equal to 0 when there is no

makes no difference when dealing with the Gaussian kernel because it, as above, is a function of
the difference between two points. From now on, ¢ represents a function of two variables as in the
kernel literature.
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overlapping support. As such, we expect that we would be less likely to encounter
unexpected behavior in the kernel in the case where we have low entropy distributions,
which can return very high kernel evaluations. Unfortunately, a closed form expression
is not apparent in the case that p and p’ are mixtures. An approximation for mixtures,

which when applied to kernel density estimation yields

[ (¥ o) (53 e) aon 335~ [ Vit oty s

(3.16)
was proposed in [21], while Gibbs sampling was suggested in [22]. The heuristic solu-
tion does not have theoretical rigor, while Gibbs sampling is undesirable, especially
in high dimensions. We further analyze the expected likelihood of kernel density

estimations in the following sections.

3.2.1.1 Example in Two-Dimensions

Figure 3.1 outlines the probability product kernel applied to two-dimensional data.
In Figure 3.1(a) a set of vectors is represented by its scatter plot. The vectors were
generated from a mixture of 10 Gaussians with means drawn from a uniform distri-
bution over the unit square, and o = 0.05. Figure 3.1(b) shows the estimated density
over that same set of vectors. Figures 3.1(c) and 3.1(d) show densities estimated
from samples of the same mixture and of a different mixture, respectively. Finally,
Figures 3.1(e) and 3.1(f) show the product of these two densities with the original.
As the densities estimated from two different sets of samples from the same distribu-
tion have higher overlap than the two densities estimated from samples of different
distributions, the integral of the probability product will be much higher for densities
estimated from the same underlying distribution.

For simplicity, we continue with the assumption that the kernel is isotropic. This

in fact does not turn out to be a large setback as the space itself can be transformed

21



09
08F N +
.
07 s : fr« + ¥ +}
L .
o+
051 ¥ O
i
04 + 7\]{'."0‘0"‘!‘“‘
03F " T+ o4 .
+ + + o+ + o+
02t + t+ ot . st
ot + * *,
01f + +
Tyt +
OD E‘I 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1
(a) A vector set (b) Density estimated from set of vec-

tors

N
i
i
i

oy

i

[
T

i
Aol

/
i

(c) Estimated density from a different (d) Estimated density from a sample of
sample of the same class a different class

(AN

Moy

(e) Probability product of the densities (f) Probability product of the densities
shown in figures 3.1(b) and 3.1(c) shown in figures 3.1(b) and 3.1(d)

Figure 3.1. Probability product applied to density estimations of two-dimensional
data
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prior to classification [16]. Alternatively we could use the more general formulation
of the kernel between Gaussians in [22] that places no restrictions on the covariance

matrices (equation (3.4)).

3.2.2 Bandwidth Selection

In choosing the parameter, o, there are several sensible approaches one could
consider. A common technique applied to density estimation is to leave out each
single point one at a time and maximize the likelihood of that point with respect to

all the other points

m
o = argtrrnaxiz_;log (ﬁ ;qba(xi, a:])) (3.17)
where ¢, is the window function calculated at scale o. This does not exactly make
sense in the case where we are learning over sets of vectors, however, as we are
maximizing the likelihood of only individual points with respect to other points. This
does not directly say anything about the likelihood of the set of points as a whole.
We could instead leave out each single collection of points and maximize the

likelihood of that set of points with respect to all the other points

n
ot = argmaleog ( ! Z E,,., (pj,a)> (3.18)
7 =1 n—1 i

where p; , and p;, are density estimates at scale o and the expectation is calculated
as in equation (3.15). This solution treats the problem as an estimation of density
over a set of distributions, where each distribution represents an entire image.

A discriminative approach may yield better results with respect to classification.
Recent work on estimating discriminative densities includes [32]. More directly, we
could employ a wrapper technique to determine bandwidth directly from the perfor-

mance of the classifier on a test set of images.
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3.3 Similarities Between the Expected Likelihood Kernel with

Density Estimation and Previous Approaches

The expected likelihood kernel between kernel density estimations has a very
similar form to the matching kernel with a Gaussian RBF as the minor kernel (equa-
tions (2.2) and (3.15)). Aside from a constant factor, the only difference is that the
matching kernel sums the contribution only from the closest match via the max oper-
ation, while the expected likelihood kernel between kernel density estimations sums
over every contribution. Density estimation uses a lower variance statistic than the
matching kernel and there are no discontinuities introduced as a result of the max
operation.

The pyramid match kernel (equation (2.6)) itself can be viewed as an approxima-
tion to the matching kernel, and therefore an approximation to the estimate of the
expectation of one distribution (which generated one set of points) with respect to
another distribution (which generated the second set of points). At each level of the
pyramid, the distance between the newly matched vectors is constrained to be some-
where between 201 and /D - 2¢, where D is the number of dimensions of the feature
space. If we know a density for the features over the manifold in which they lie, or
if we assume a uniform density, we can estimate the expected distance, d;, between
newly matched features at each level. If we replace the assignments for the weights,

o;, given in equation (2.9) with an assignment that samples a Gaussian RBF kernel
a; = e /2 (3.19)

the similarities between the two become apparent.

3.3.1 Robustness Issues
The similarity between the matching kernel and the expected likelihood kernel

gives rise to the question of what statistics are appropriate to allow maximum dis-
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crimination while maintaining robustness. Robust estimators are those that make use
of some subset or weighting of the data to reduce the effect of outliers [18, 19]. One
of the most simple techniques for selecting a subset of the data is via order statistics.
By including only a certain quantile of data, outliers will fall in the excluded range
and the estimator will not be effected. The max operation in the matching kernel
is in fact an order statistic that excludes every data point except the closest match.
This is a reasonable choice in the event that it is assumed that each local feature
in one image matches exactly one feature in the other. Alternative statistics would
include averaging over quantiles of the ordered data, or hybrid approaches in which
the tradeoff between an estimator based on all the data, or on just a portion of the
data, are controlled by a parameter of the estimator [19].

In terms of discrimination, we wish to select an estimator that is robust to values
that give little or misleading information about class membership. In general, we wish
to choose a statistic that gives a higher similarity value to objects of the same class
and a lower similarity value to objects of different classes. This is a data dependent
choice, and without further assumptions about the distribution from which the data
are drawn, the statistic used must be chosen experimentally.

There is in fact a certain amount of robustness built into any system that calculates
statistics over Gaussian kernel evaluations. Because

lim  ¢(z;,25) =0 (3.20)

|wi—z}|—+o0

outliers will tend to have a limited effect on the summation. However, experimental
results show that the choice of estimator does have a significant effect on classification
performance.

In this chapter we have presented a probabilistic framework for non-parametrically
estimating the similarity between sets of vectors using kernel density estimation with

probability product kernels. This has lead to the development of the expected like-
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lihood kernel (equation (3.15)). Interestingly the pyramid match kernel with appro-
priate weighting is an approximation to the matching kernel with a Gaussian minor
kernel, and both of these kernels can be better understood by their relation to the

expected likelihood kernel.
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CHAPTER 4
COMBINING MULTIPLE SOURCES OF INFORMATION

Ensemble methods are learning algorithms that have been shown to improve per-
formance by combining the outputs of multiple component classifiers. Ensemble meth-
ods for classification have been shown to have better accuracy than the component
classifiers if the component classifiers are accurate and diverse [9]. An accurate classi-
fier is one that outperforms random guessing, and diverse classifiers are those that pro-
duce independent errors. Typically, application of ensemble methods focuses largely
on inducing independence of errors by manipulating the training set, manipulating
the input features, or injecting randomness in the learning algorithm.

Despite the advantages of local features, global features are still useful in appli-
cations where a rough segmentation of the object of interest is available. Due to the
fundamental difference in how local and global features are computed, we expect that
the two representations would provide different kinds of information. Most local fea-
tures represent texture in an image patch (c.f. Section 1.1). Global features include
contour representations, shape descriptors, and texture features. Global texture fea-
tures and local features provide different information about the image because the
support over which texture is computed varies. We expect classifiers that use global
features will commit errors that differ from those of classifiers based on local fea-
tures [28].

We certainly have a degree of independence between local and global features, so
a classification system that made use of both kinds of features would likely perform

much better than a classifier based on either type alone. One could combine the out-

27



puts of several base classifiers trained on either local or global classifiers using a fixed
strategy, or a meta-learning technique such as stacking [41, 28]. Alternatively, one
could design a kernel that combines the discriminative abilities of kernels computed
over different feature types. This is a general technique that extends to multiple view
learning in general, e.g. classification of video segments using both audio and video

channels simultaneously [36].

4.1 Multiple View Kernels

It is common practice to combine multiple sources of information in a single ker-
nel. For example, when the matching kernel was first proposed [45], a variant was
suggested that made use of the relative positions of the local features in the image
space. This variant replaced the minor kernel in equation (2.3) with

¢ (w5, @}) = Bz, a}) - e~ o) 20 (4.1)

where [(z;) is the coordinate of the feature in the image. The authors sought to
constrain the kernel to match objects that have components with similar appearance
as well as similar spatial layout within the image, and they did so by multiplying
the minor kernel with a Gaussian RBF kernel between alternate representations of
the local features, namely their z and y coordinates. What technique for combining
kernels for different object representations is the most effective for improving classi-
fication accuracy? To begin to answer this question, let us consider two techniques
for combining kernels, multiplication (as above) and addition.

To understand the effects of adding two kernels, consider the interpretation in

embedding space. Assume two positive definite kernels

k1($1,$2) = <(I)1($1),@1($2)> (42)

kz(.’Bl, .’)32) = < <I>2(3:1), @2(332) > (43)
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The sum of the two is

Esum(1,22) = ki(z1,x2) + ko(z1, 22) (4.4)
= < @1(.’1}‘1),@1(.@“2) >+ < <I>2(J:1),<I>2(:c2) > (45)
|®1(x)] . . |®2(x)] . .
= Z & (21) @ - By ()@ | + Z By (z1)W) - By(z5)9) [4.6)
=1 j=1

where ®; (1)@ is the ith element of the vector ®;(x) in the embedding space. This
is itself equivalent to a dot product in an induced space of dimensionality |®;(z)| +
|®2(x)|. One can see that data that are separable in either of the two embedding
spaces are separable in the augmented space. To the degree that the individual kernels
are independent, this will increase overall separability and therefore classification
accuracy. If we wish to control the bias accorded to each of the component kernels,

we can weigh them differently

ksum(z1, 2) = aki(z1,22) + (1 — a)ka(z1, 22) (4.7)

where 0 < o < 1.
To understand the effects of multiplying two kernels, consider again the interpre-

tation in embedding space.

kproa(T1,%2) = ki(z1,22) - ka(21, 22) (4.8)
= < @1(.’171),@1(.’132) > - < (I>2<$1),‘I>2(332) > (49)
#1(2)] . RWAZE] ‘ |
= Z @1(331)(1) ) ‘191(1132)(’) Z @2(331)(1) ) @2(:,;2)(1) 4.10)
i=1 =1

|1 ()| |@2()|
= ) ) (@)D Ba(w1) ) ( By (w2) D - Ba(wa)V))  (4.11)

i=1  j=1

We can perform a variable substitution where a new variable k£ ranges over ¢ and

Jj, and we see that the sum in equation (4.11) is itself equivalent to a dot product.
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The dimensions of this transformed space consist of the products of every pairwise
combination of dimensions in the embedding spaces of the two component kernels.
It is not clear if and when the product of two kernels would perform better than
the sum, but the sum is attractive for its interpretation with respect to separability.
It is of course possible to simultaneously capture the advantages of both techniques

with minimal computation

kpoiy(z1,22) = (ki(z1,22) + 1) - (ka(z1, 22) + 1) (4.12)

= kl(.’L'l, 1132) . kz(ml, .’L'2) + kl(iﬂl, .’L‘2) + kz(ml, .’L‘2) +1 (413)

Any separability introduced by either the sum or the product of the original kernels
will also be available in this kernel. One can see this by noting that equation (4.13) is
the sum of equations (4.8) and (4.4) and then applying the analysis in equation (4.6).
We can again use a parameter, «, to control the weight given to each term in equa-
tion (4.13)

kpoty (21, 22) = (k1(z1,22) + (1 — @)) - (ka(z1, z2) + ) (4.14)
We can recursively apply the analysis above to understand the embedding space of any
multivariate polynomial with an arbitrary number of component kernels. However,

we need to be careful about overfitting, which is quite easy to do by considering higher

order terms.
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CHAPTER 5
EXPERIMENTAL RESULTS

5.1 Video Plankton Recorder Data Set

One of the applications of these techniques is to marine science data collected by
a tool called the Video Plankton Recorder (VPR) [8]. The Video Plankton Recorder
captures images of multicellular organisms that have organs and appendages with
distinct visual appearances (Figure 5.1). The data set consists of 1826 gray-scale
images that belong to one of 14 classes (Table 5.1), which have been identified by
experts [28]. The data set is challenging from a classification viewpoint for several
reasons. Organisms are photographed from arbitrary three-dimensional views. The
size of the organisms relative to the field of view of the camera results in many images
in which the organism is only partially visible. It is consequently a challenging and
attractive data source for testing our methods. The data set is described in greater

detail in [28].

5.1.1 Comparison of Matching Kernel and Expected Likelihood Kernel
We report results here for a comparison of the matching kernel and the expected
likelihood kernel (equation (3.15)). The first experiment consisted of comparing the
accuracy estimate from ten-fold cross validation for a range of bandwidths (o). Classi-
fications were computed using the libsvm library [7]. Results are shown in Figure 5.2.
We see that the matching kernel consistently outperforms the expected likelihood
kernel for all bandwidths, and that the maximum accuracy for both the matching

kernel and the expected likelihood kernel occurs at around ¢ = 275. The superior
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Table 5.1. Taxonomic categories of images in the VPR data set

| Category Name | Taxonomic Group | images | example |
Calanus finmarchicus copepod species 132
Chaetognaths zooplankton phylum 86
Conchoecia Ostracods ostracod genus 100
Ctenophores zooplankton phylum 34
Euphausuds zooplankton order 131
Hyperiid Amphipods zooplankton suborder 68
Pteropods zooplankton order 142
Diatom Rods phytoplankton class 97
Larvaceans zooplankton class 133
Small Copepods zooplankton class 433
Unidentified Cladocerans | zooplankton order 108
Siphonophores zooplankton suborder 202
FEuchaeta norvegica copepod species 81
developmental stage of
Siphonulae zooplankton suborder 78
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(a) Euphausiid (b) Siphonophore (c) Ctenophore

Figure 5.1. A few example images from the VPR data set.

performance of the matching kernel may be due to the fact that there are insufficient
samples in any given image to robustly estimate a density. Because clusters of local
features tend to have semantic coherence [12], we expect that the co-occurrence of
samples from these clusters will form peaks in the estimated density. If there are in-
sufficient samples in an image, peaks may not be robustly estimated and the process
may be overwhelmed by spurious features.

In order to understand better the reasons why the matching kernel outperforms
the expected likelihood kernel, we have run experiments that explore the distributions
over distances between the individual features. The experiments consisted of selecting
two example images from three different classes. We designate one of the images
from each class as a query, and the other is designated a target. We only evaluate
one sided distance in this case. The images used are shown in Table 5.2. Table 5.3
shows the histograms of distances between all pairs of points where one point is in
the query image and the other is in the target image, while Table 5.4 shows the
histograms of distances between all points in the query image, and the closest point
in the target image. We can see that the expected likelihood kernel has to choose

between distributions over distances that vary only very slightly, while the matching
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Table 5.2. VPR images used for distance experiments

| Class | Query Image Target Image

Calanus finmarchicus

Chaetognaths

“‘ H

Conchoecia Ostracods

kernel has more variation in the distributions from a given query image. In fact, only
very few features that closely match will have high values of the minor kernel in the

average operation in the matching kernel (equation (2.3)).

5.1.2 Robustness Experiments
Because of the superior performance of the matching kernel over the expected
likelihood kernel, we define a class of kernels parametrized by the order statistics as
follows
bo(1, ') = STk (1, 1)+ ha(1", 7] (5.1)

N

ks(I,1') = %ﬁ > > ¢(zi, 75) (5.2)

i=1 {a}g(i.2}) >(ziI})}

where ¢(z;, I5) is the [ BN']th largest kernel evaluation ranging over the set of vectors,
I'. (8 represents the fraction of kernel evaluations that will be averaged in the inner
loop of the double summation. In the case that § = % this is equivalent to the
matching kernel, and in the case that § = 1 the kernel becomes equivalent to the
expected likelihood kernel.

For these experiments we held the bandwidth fixed at ¢ = 275 and varied the

parameter 3. Results are shown in Figure 5.3. We can see that we do in fact get an
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Table 5.3. Histograms of distances over all pairwise feature matches. Each row
represents a different query image, while the columns are each a different target
image.

‘ H Calanus finmarchicus ‘ Chaetognaths ‘ Conchoecia Ostracods ‘

i
)
C.f \
Ch ) \
c 0 !
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Table 5.4. Histograms of distances over maximum feature matches. Each row
represents a different query image, while the columns are each a different target

image.
‘ H Calanus finmarchicus ‘ Chaetognaths ‘ Conchoecia Ostracods ‘
C.f
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Figure 5.3. Fraction of minor kernel evaluations, [, is plotted vs. accuracy on the
VPR data set. The kernel is computed as in equation 5.1.

increase in performance by averaging over a small fraction (approximately 5%) of the

kernel evaluations as opposed to only the maximum match.

5.1.3 Combining Local and Global Features

Experiments have also been run using global features with the idea of combining
global and local features for improved classification performance. Global features
used here are those reported in [28]. Results for a global feature classifier using a

Gaussian RBF kernel with varying bandwidths are reported in figure 5.4. The local
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Figure 5.4. Bandwidth, o, is plotted vs. accuracy on the VPR data set. Results
are shown for global features using a Gaussian RBF kernel.

feature kernel used here is the matching kernel. There was no statistically significant

improvement when the robust kernel was used in combination experiments.

5.1.3.1 Sum of Local and Global Kernels

When we combine local and global features using the mean of their kernels, a
significant increase in accuracy results (figure 5.5). The accuracies show a plateau in
the vicinity of the maximum, which gives us some robustness to suboptimal bandwidth
selection. Interestingly, though, the maximum does not occur at the combination of

the maximum matching kernel and the maximum global feature kernel. The peak
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Figure 5.5. Classification accuracies for the mean of the kernels for global and local
features.

instead is located at a point where the matching kernel bandwidth is somewhat smaller
than that indicated in figure 5.2, and at a point where the global feature kernel
bandwidth is somewhat larger than that indicated in figure 5.4. In an ensemble,
the accuracy of the classifier is dependent on that errors between components are
independent, rather than that the accuracy of each component is maximized.
Fixing the local bandwidth at 7 and the global bandwidth at 200, we have run
experiments in which the weight accorded to global and local kernels varies as in

equation 4.7. Results are shown in Figure 5.6. We can see that the performance varies
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Figure 5.6. Classification accuracies for weighted averages of the kernels for global
and local features.

as the parameter o changes with a maximum performance when global features are

given a weight of approximately 0.3 and local features a weight of 0.7.

5.1.3.2 Product of Local and Global Kernels
Results are also shown in Figure 5.7 for the product of the component kernels. Ac-
curacies are similar between the product and the mean, though the product performs

slightly better for a larger global feature bandwidth. The difference between the best
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Figure 5.7. Classification accuracies for the product of the kernels for global and
local features.

performance of the mean and the best performance for the product is statistically

insignificant, 65.1 + 2.7% vs 67.4 + 3.9%, respectively.

5.1.3.3 Polynomial Combination of Local and Global Kernels

For these experiments, we ran a simple polynomial combination of local and global
features as in equation 4.14. In the first experiment, we used an equal weighting
between the kernels computed for local and global features, shown in Figure 5.8. The
maximum accuracy of approximately 72% is the best accuracy achieved thus far on

the VPR data set. Additionally, we can see in Figure 5.8 that there is a relatively
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broad plateau in the graph of the accuracy, indicating that the kernel allows for a
good amount of tolerance to different settings of the parameters without significant
loss of classification accuracy.

In the second experiment, we varied the weight of the local and global kernels.
Due to the high performance of the weighting in Section 5.1.3.1 we set the kernel over
global features to have a weight of 0.3 and the kernel over local features a weight
of 0.7. Results for this weighting are shown in figure 5.9. The weighting performed
slightly worse than the unweighted experiment described in the previous paragraph.
This indicates that the weighting may not add significantly to the discriminability of

the kernel.

5.2 ETH-80 Data Set

Comparative studies [14, 17] have used the ETH-80 data set as a baseline [27]. The
ETH-80 data set consists of 8 different classes with 41 different views of 10 different
examples per class. Example images are shown in figure 5.10. Results are reported
here for several variations of local kernels to aid in comparison with other techniques
that have results reported for the same data set. In our experiments here, we used
ten-fold cross-validation with all images of one object from each class held out in each
fold.

Results are shown for the matching kernel and expected likelihood kernel applied
to the ETH-80 data set in figure 5.11. We can see that the matching kernel again
outperforms the expected likelihood kernel by quite a large margin. The results of
the matching kernel are consistent with those reported in [14].

Robustness experiments have been run on the ETH-80 data set as described in
Section 5.1.2. Again, the bandwidth was held constant, o = 275, while the fraction
of evaluations included in the kernel, 8, was allowed to vary. Results are shown in

figure 5.12. We can see that unlike the VPR data set, there is no advantage from
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Figure 5.8. Classification accuracies for an unweighted polynomial combination of
the kernels for global and local features.
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Figure 5.9. Classification accuracies for a weighted polynomial combination of the
kernels for global and local features.
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Figure 5.10. Example images from the ETH-80 data set.
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Figure 5.11. Bandwidth, o, is plotted vs. accuracy on the ETH-80 data set. Results
are shown for the matching kernel, and for the expected likelihood kernel.
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Figure 5.12. Fraction of minor kernel evaluations, (3, is plotted vs. accuracy on the
ETH-80 data set. The kernel is computed as in equation 5.1.

averaging over a small fraction of the data. The performance seems to monotonically
decrease with the number of minor kernel evaluations. This underscores the data
dependent nature of the performance of the robust kernel and raises the question of
whether interest point detection algorithms might be designed to select sets image

patches that would benefit from the robust kernel approach.
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CHAPTER 6
CONCLUSION

Interestingly, the best performance using only bags of features of 56.6% on the
VPR data set is not so different from that of a related technique in which a maximum
likelihood classifier is employed using non-parametric density estimation [28]. In this
technique a single distribution over local features is estimated for an entire class by
estimating a density using all features in the training images. A query image is set
to the maximum likelihood estimate computed with the assumption of independence

between all features in the image

logp(I|C;) = Zlogp z;|C;) (6.1)

where C; is a class label. The maximum likelihood technique achieved an accuracy of
52.1% on the VPR dataset.

It is interesting to consider when either of the techniques might perform better
than the other. The maximum likelihood classifier is based on an assumption of
independence between features in an individual image, and on an assumption that it
is appropriate to estimate a distribution over an entire class. This latter assumption
may break down in the event that a class consists of a mixture of two or more
sub-classes that are drawn from different distributions. In this case, the technique
conflates the two distributions. The kernel approach, on the other hand, is based on
pairwise comparisons. Because the matching kernel, the expected likelihood kernel,

and the robust kernel use a Gaussian RBF kernel as the minor kernel, they in fact have
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infinite VC dimension!. Consequently, the kernel approach can learn more flexible
decision boundaries in the presence of sub-classes and will not conflate distributions.
A weakness of the kernel approach, however, is closely tied to its strength. By only
looking at the vectors present in two images at any time, the approach is limited by
the number of features in an image. Eichhorn and Chapelle report that classification
performance using local feature kernels increased with the number of features per
image [14]. This is not surprising as too few samples will yield a poor estimate of the
distribution for a given image.

Additionally, the kernel that combines the matching kernel with global features
achieves a maximum performance of approximately 72%, which is slightly better
than the best accuracy given in [28], in which the maximum likelihood classifier
(equation 6.1) is combined with a SVM classifier over global features using stacking.
This approach, therefore, has some of the same expressive capability as meta-learning
techniques, despite the significant increase in computational efficiency resulting from

the support vector framework.

6.1 Future Work

That the matching kernel outperformed the expected likelihood kernel indicates
that a principled approach using non-parametric density estimation is not ideal given
the distribution of features in real data. Although using an order statistic increases
performance, better modeling of the data themselves may result in more accurate dis-
tributions over which the expected likelihood kernel is optimal. Explicitly accounting
for subclasses in the data, applying topic models [3, 20|, and modeling spurious fea-

tures in the image are promising places to start.

! The Vapnik-Chervonenkis dimension is a measure of the capacity of a set of functions to separate
sets of data into two different classes [43].
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Modeling the data prior to application of the kernel makes use of information
regarding the co-occurrence of features in the data, information that was not avail-
able when designing a kernel independent of empirical observation. As we make use
of additional information sources, feature locations are likely to improve results sig-
nificantly. Part-based models based on spatial clusters of features is one recently
proposed approach [4].

As new sources of information are accounted for, the factorization of the estimated
distribution may or may not be structured in such a way that probability product
kernels can be computed in closed form. This efficiency is key if the computational
advantages of SVMs are to pay off. Consequently, approximations of optimal models

must be explored that can be computed efficiently.

o1



1]

2]

3]

4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

BIBLIOGRAPHY

Barla, A., Franceschi, E., Odone, F., and Verri, A. Image kernels. In Proceed-
ings of the International Workshop on Pattern Recognition with Support Vector
Machines (2002).

Bhattacharyya, A. On a measure of divergence between two statistical popula-
tions defined by their probability distributions. Bulletin of the Calcutta Math
Society (1943).

Blei, D., Griffiths, T., Jordan, M., and Tenenbaum, J. Hierarchical topic models
and the nested chinese restaurant process. In Advances in Neural Information
Processing Systems 16, S. Thrun, L. Saul, and B. Schélkopf, Eds. MIT Press,
Cambridge, MA, 2004.

Bouchard, G., and Triggs, B. Hierarchical part-based visual object categoriza-
tion. In IEEFE International Conference on Computer Vision and Pattern Recog-
nition (2005).

Burges, C. J. C. Geometry and invariance in kernel based methods. In Advances
in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and
A. Smola, Eds. MIT Press, Cambridge, MA, 1998.

Burges, C. J. C. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2, 2 (1998), 121-167.

Chang, C.-C., and Lin, C.-J. LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/"cjlin/libsvm, 2001.

Davis, C. S., Gallager, S. M., Berman, M. S., Haury, L. R., and Strickler, J. R.
The video plankton recorder (VPR): design and initial results. Archiv fir Hy-
drobiologie Beiheft Ergebnisse der Limnologie 36 (1992), 67-81.

Dietterich, T. G. Ensemble methods in machine learning. In First International
Workshop on Multiple Classifier Systems (2000), pp. 1-15.

Dietterich, T. G., and Bakiri, G. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 (1995),
263-286.

Dietterich, T. G., Lathrop, R. H., and Lozano-Perez, T. Solving the multiple-
instance problem with axis-parallel rectangles. Artificial Intelligence 89, 1-2
(1997), 31-71.

52



[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Dorké, G., and Schmid, C. Object class recognition using discriminative local
features. Submitted to IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2004.

Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification, second ed.
John Wiley & Sons, Inc, 2001.

Eichhorn, J., and Chapelle, O. Object categorization with SVM: kernels for local
features. Tech. rep., Max Planck Institute for Biological Cybernetics, Tiibingen,
Germany, 2004.

Gértner, T., Flach, P. A., Kowalczyk, A., and Smola, A. J. Multi-instance
kernels. In Nineteenth International Conference on Machine Learning (2002),
pp- 179-186.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. Neighborhood
components analysis. In Advances in Neural Information Processing Systems 17,
Lawrence K. Saul, Yair Weiss, and Léon Bottou, Eds. MIT Press, Cambridge,
MA, 2005.

Grauman, K., and Darrell, T. Pyramid match kernels: Discriminative classifica-
tion with sets of image features. Tech. rep., Massachusetts Institute of Technology
- Computer Science and Artificial Intelligence Laboratory, 2005.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. Robust
Statistics: The Approach Based on Influence Functions. John Wiley & Sons, Inc,
1986.

Hettmansperger, T. P., and McKean, J. W. Robust Nonparametric Statistical
Methods. John Wiley & Sons, Inc, 1998.

Hofmann, T. Probabilistic latent semantic analysis. In Uncertainty in Artificial
Intelligence (1999).

Jebara, T., and Kondor, R. Bhattacharyya and expected likelihood kernels. In
Conference on Learning Theory (2003).

Jebara, T., Kondor, R., and Howard, A. Probability product kernels. Journal of
Machine Learning Research 5 (2004), 819-844.

Kadir, T., and Brady, M. Saliency, scale and image description. International
Journal of Computer Vision (2001).

Ke, Y., and Sukthankar, R. PCA-SIFT: A more distinctive representation for
local image descriptors. In IEEE International Conference on Computer Vision
and Pattern Recognition (2004).

Kondor, R., and Jebara, T. A kernel between sets of vectors. In International
Conference on Machine Learning (2003).

93



[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

Kreflel, U. Pairwise classification and support vector machines. In Advances
in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and
A. Smola, Eds. MIT Press, Cambridge, MA, 1999.

Leibe, B., and Schiele, B. Analyzing appearance and contour based methods for
object categorization. In IEEE International Conference on Computer Vision
and Pattern Recognition (2003).

Lisin, D. A., Mattar, M. A., Blaschko, M. B., Benfield, M. C., and Learned-
Miller, E. G. Combining local and global image features for object class recogn-
tion. In IEEE Workshop on Learning in Computer Vision and Pattern Recogni-
tion (2005).

Lowe, D. G. Object recognition from local scale-invariant features. In Proc.
International Conference on Computer Vision (1999).

Lowe, D. G. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision (2004).

Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide baseline stereo
from maximally stable extremal regions. In Proceedings of the British Machine
Vision Conference (2002).

Meinicke, P., Twellmann, T., and Ritter, H. Discriminative densities from maxi-
mum contrast estimation. In Advances in Neural Information Processing Systems
15, S. Becker, S. Thrun, and K. Obermayer, Eds. MIT Press, Cambridge, MA,
2003.

Mikolajczyk, K., and Schmid, C. Indexing based on scale invariant interest
points. In Proc. International Conference on Computer Vision (2001), pp. 525—
531.

Mikolajczyk, K., and Schmid, C. An affine invariant interest point detector. In
European Conference on Computer Vision (2002), pp. 128 — 142.

Mikolajczyk, K., and Schmid, C. A performance evaluation of local descriptors.
Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence
(2004).

Muslea, 1. Active Learning With Multiple Views. PhD thesis, University of
Southern California, 2002.

Ravela, S. On Multi-Scale Differential Features and their Representations for Im-
age Retrieval and Recognition. PhD thesis, University of Massachusetts Amherst,
2002.

Rifkin, R., and Klautau, A. In defense of one-vs-all classification. Journal of
Machine Learning Research 5 (2004), 101-141.

54



[39] Scholkopf, B., and Smola, A. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press, 2002.

[40] Scholkopf, B., Smola, A., and Miiller, K.-R. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation 10 (1998), 1299-1319.

[41] Seewald, A. K. Towards Understanding Stacking - Studies of a General En-
semble Learning Scheme. PhD thesis, Austrian Research Institute for Artificial
Intelligence (FAI), 2003.

[42] Silverman, B. W. Density Estimation for Statistics and Data Analysis. Chapman
& Hall/CRC, 1986.

[43] Vapnik, V. N. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

[44] Vidal-Naquet, M., and Ullman, S. Object recognition with informative features
and linear classification. In International Conference on Computer Vision (2003).

[45] Wallraven, C., Caputo, B., and Graf, A. B. A. Recognition with local features:
the kernel recipe. In International Conference on Computer Vision (2003).

[46] Wolf, L., and Shashua, A. Learning over sets using kernel principal angles.
Journal of Machine Learning Research 4 (2003), 913-931.

95



