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Abstract. It is quite common that multiple observers attend to a single
interest point or that a single moving observer is fixating on a static
interest point. The current work analyzes those situations and suggests
to use it in various applications, including surveillance, social robots and
more. The analysis includes the detection that such an interest point
does exist, where it is located, who was attending to it and where and
when each observer was while attending it.

The least invasive way to monitor those situations is by using a cam-
era that captures the observers while using existing face detection and
head-pose estimation algorithms. The current work reviles a surprising
relation between fundamental problems in vision and human (social) be-
havior. This relation is a novel constraint that enables the analysis for
the general case of an uncalibrated camera in a general environment.
This is in contrast to other works on similar problems that inherently
assume a known environment and a calibrated camera.

The only assumption that is made is that the visual attention is aggre-
gating at an interest point from several directions. In addition to the
detection of a mutual awareness event the suggested method is able to
recover the calibration of the camera, the 3D locations of the observers
and the 3D location of the interest point where the attention is aggre-
gating.

1 Introduction

Mutual awareness (MA) is the event where multiple observers attend to a single
interest point at the same time. Mutual awareness is a fundamental event when
analyzing the social behavior of a group. It indicates a common interest and
a common knowledge of the group, thus it was addressed by the psychological
community in multiple contexts, e.g. [1 3].

The detection of mutual awareness events and their attributes can assist
various applications. The least invasive way to monitor those situations is by
using a camera that captures the observers. Solutions for this problem can use
available software for the detection of faces and for the estimation of head poses.

The current work addresses the detection of MA events and their attributes.
In fact, it covers also an even more general problem that takes into account
the time domain. That is when a single static interest point is the visual focus
of attention (VFOA) of several observers at different times. This generalization
will be noted by temporal mutual awareness (TMA). The related interest point
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of both MA and TMA will be noted as the Visual Intersection Of Attention
(VIOA). The proposed method detects an MA event with its attributes from a
single image (simple MA) or from video. Those attributes include its VIOA, the
observers and their spatiotemporal locations.

Various applications could be assisted by detecting an MA event and its
attributes. One domain for applications is surveillance systems. A surveillance
system may be assisted by passersby to enhance its abilities by using the detec-
tion of an unusual MA event to indicate that an important event was detected
by the observers. In addition, it is often that an antisocial behavior of an indi-
vidual includes exceptional attention patterns. In particular, an exception to the
MA should be checked. For example, while waiting at a crosswalk for the light
to change, a pickpocket will look at bags and wallets and not at the traffic light
as the others. In addition, the intention of a single observer may be estimated
while he is moving and fixating on a single point.

Another domain is robotics. When a social robot enters a new place it can
obtain valuable information just by detecting the VIOA points where human
attention is aggregating at.

Support-systems applications may include the online analysis of a team’s at-
tention such as: a choir, orchestra members, a basketball team, actors, dancers,
etc. Moreover, an analysis of an audience’s attention can assist quality assur-
ance. For example, in a lecture, it may help to address non-attentive parts of
the audience. In a theater or a show it may help rate the performance of the
actors/dancers.

Other application domains that could be assisted by the proposed method,
include: content management, advertisement, architecture and interior design,
psychology and sociology.

The analysis of the MA event using a single camera depends on three types
of information: (1) the 3D structure of the scene (the positions of observers,
camera and the VIOA point), (2) the camera’s internal calibration matrix and
(3) the detection of observers and their gaze direction from the images.

The research so far used gaze estimation to infer the visual focus of attention
(VFOA) of a single independent observer while assuming a known environment
and a calibrated camera. The known environment generally includes a specific
setup of observers (sitting persons), a fixed camera position and a predefined set
of possible interest points. For example a meeting room with two fixed cameras,
four sitting persons and a set of six possibly attended targets including a screen,
a table, and the persons [4, 5].

The setup addressed by previous research is suitable in meeting rooms or
other controlled environments but not for the general case when the observable
targets can’t be determined in advance and the observers can change their posi-
tions. This work will close the gap by handling a broader set of setups when the
position of the observers, the camera and the attended targets are not known in
advance.

This work shows how an uncalibrated camera can be used to detect the
VIOA position in a general environment. The only assumption is that the visual
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attention is aggregating at a point from several directions. In addition to the
detection of a mutual awareness event the suggested method is able to recover
the calibration of the camera, the 3D locations of the observers and the 3D
location of the VIOA. The only exception to this is when the VIOA is the
camera, in this case the structure is recovered up to an unknown scale factor.

Finally, the suggested method demonstrates how and at what extent head
pose estimation algorithms can be used in a high level application.

The following section reviews related work. Next, Section 2 describes the pro-
posed method, including its main ideas. The associated geometry is presented in
Section 3. Section 4 addresses the challenges in real-world scenarios. Simulation
and real-data experiments are presented in Section 5, including the outcome of
the method on many images obtained from the Internet. Finally, the last section,
6, is devoted to conclusions.

1.1 Related Work

Related work on the recovery of VFOA will be presented first. Next, related
work on head pose estimation and face detection will be addressed.

Detection of VFOA of a Single Observer To the best of our knowledge
there is no work that addresses the VIOA of a group as a whole in the general
case. However, for a single observer, the recovery of the VFOA using a single
camera was addressed when scene structure and camera calibration are known
[6,7,4,8,5]. An attention monitoring system for air-traffic controllers [6], is used
to build the attention distribution of attended objects. They use a single camera
to track head pose and a complete environment model including 3D structure
and objects regions. Meeting rooms are addressed by [7,4,5,9]. The structure
of the meeting room is known in detail, including the sitting positions of the
observers, the set of possible VFOAs and the location of the calibrated cameras.
A training set is used to associate a set of specific head-poses with the set of
image-VFOAs (the 2D projection on the image plane of a VFOA in 3D space).
Moving observers that are attending to a single VFOA are addressed by [8]. The
camera and the single VFOA are fixed and predefined, while detecting events of
attending to the VFOA and counting how many observers are attending to the
VFOA. Meeting context is used by [9] to cope with the ambiguity in a meeting
room with moving observers and several VFOAs.

Face Detection and Head Pose Estimation Even the most accurate gaze
estimation methods do not find a single point, but return a cone (centered around
a ray) in the 3 dimensional world. Thus, additional cues are inherently required
for the recovery of the VFOA or the VIOA. Nevertheless, an accurate estimation
of gaze direction of a person may significantly improve the accuracy of the recov-
ery. A basic finding states that the VFOA can be reasonably approximated by
head-pose in many cases [10]. This is important since pupil positions can be re-
covered only in high resolution images. The estimation of the head’s angles from
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its image is not an easy task and the accuracy of current solutions is lacking.
Specifically for a head image in moderate resolution the pitch angle is usually
estimated with large errors. A recent survey [11], covers about 100 methods for
pose estimation, including [12] that is used in our implementation. This method
is mentioned in the survey as one of the most accurate methods. Still, head pose
estimation remains an open research problem, e.g. [13].

The detection of faces in an image is the first step in VFOA recovery. An
efficient method that is based on a boosting algorithm is the popular method by
Viola and Jones [14]. There are several extensions of it including [15,16] and a
popular implementation [17].

2 The Suggested Method

This work studies the mutual awareness (MA) problem, in which a single static
interest point is the visual focus of attention (VFOA) of several observers over
a time period. The interest point is called the wvisual intersection of attention
(VIOA). In other words, the attention rays of the observers intersect in 3D
space at the VIOA and the attention is aggregating at the VIOA.

This work assumes a general setup for which: (1) the environment is arbitrary,
(2) an uncalibrated camera is used, (3) the location of the VIOA may be arbitrary
(may even be out of the camera’s field of view), and (4) that there is no training
data for the VIOA. The 3D recovery of the VIOA may be obtained from a single
arbitrary image of observers who are in a mutual awareness state or from a video
of fixating observers.

An hypothesis of a mutual awareness event includes a group of observers and
their VIOA. Obtaining a small set of MA hypotheses is essential for an efficient
solution. The geometry of the VIOA is used to constrain the hypothesis search.
When there is no noise in the measurements and the internal calibration of the
camera is known the geometry enforces a single hypothesis. However, in the real
world the measurements are noisy and the calibration is not always known.

The problem’s setup consists of n observers, the intersection point, @), the
camera (including its calibration matrix K'), the head pose algorithm and finally

the measurements vector U = (U1 U, ... Un)T, where U; = (pi ri o, B 'yi)T.
This parameters are the head position in the image, its size and its pose angles,
which are the results of the detection algorithms.

The following algorithm handles the ideal situation when all observers have
the same VFOA, K is known and the attributes for all observers are known and
accurate:

procedure Is-MUTUAL- AWARENESS(image/s, K)
U <+ DETECT-OBSERVERS(image/s)
Q + EsTIMATE-VIOA(U, K)
output (Q,U)

First it detects the observers and their associated measurements and then applies
the geometric constraint and finds the VIOA. The estimation of the VIOA is
explained in Section 3.
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In real life, the VIOA is shared by a subset of the observers in the images
having U’ C U as their set of measurements. In addition, the measurements of
an observer, U; € U’, are noisy and K might be unknown. The full algorithm
estimates an unknown K while obtaining an initial U’ and . Then, it refines
K and Q to find the largest U’ with the highest probability.

procedure Is-MUTUAL-AWARENESS(image/s, Ko, 0, T)z2)
U + DETECT-OBSERVERS(image/s)
(K, Q) + ESTIMATE-CALIB-MAT(U, Ko, 0, T\ 2)
(K,Q,U’,score) + FINE-TUNE(U, K, Q, 0, T, 2)
output (K,Q,U’, score)

The details of this algorithm are given in Section 4.

3 The Geometry of Mutual Awareness

Estimating the position of the VIOA is inherently coupled with the detection of
an MA event as it is its main attribute. The analysis of the geometry of an MA
event is a major part in this work. It enables the estimation of VIOA from head
pose and constrains the search of related parameters, such as camera calibration
and scene structure.

The following notations will be used for the geometric analysis. Let P; =
(X:,Yi, Z)T € R®, i € {1,...,n} be the 3D positions of n heads. The pose
of the i’th head is expressed by (a;, 3;,7;) that respectively are the yaw, pitch
and roll angles. The angles are given with respect to a head facing the camera
(frontal viewed head). In this situation a; = f8; = v; = 0. The attention ray of
a head is a ray that is perpendicular to the face plane and is directed forward.
Note that the roll rotation does not change the direction of the attention ray.
For a frontal viewed head the attention ray is directed towards the camera. The
angles are combined to create the rotation matrix, R;(a, 5;,7vi) = Rg, - Ra, - R,

The attention ray toward the camera (frontal viewed) is rotated by the rota-
tion matrix to the direction of the VIOA, @ (current pose). This can be written
as

(Q—P) x(R;-PF;) =0. (1)

3.1 VIOA Estimation via Geometric Constraints

For every head two planes can be considered. The first plane, IT;, is spanned by
P; and R; - P;. This plane contains the origin. The second plane, Hf , is the 7’th
local Y Z plane. Both planes contain the intersection point, Q).

The normals to the planes IT; and IT f will be denoted N; and M; respectively.
The two plane types complement each other, when all the planes of one type
coincide, the planes of the other type do not. Plane IT; constrains the intersection
point by NI -@Q = 0. Plane HZ’-B constrains the intersection point by MT - (Q —
P;) = 0. Arranging the normals in a matrix yields for the first type normals
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Fig. 1. (a) Four observers {P;};c(1,2,3,4}, their projection on the image plane and their
associated planes. The attention rays of the four observers intersect at Q. The first type
planes, II;, contain the red triangles Ap, 0,q¢. The second type planes, Hf, contain the
yellow triangles Ap, o7 o. The VIOA, @, sits on the intersection line of the first type
planes. (b) Scene top view, the X Z-plane. Depth estimation of the #’th observer is
computed from the diameter of head’s projection.

the matrix N = (N1 Ny ... Nn) and similarly for the second type normals the
matrix M. The above constraints are written as

MT 1 mp
o= (%) - (") 2
where mp, = M- Py, N; = X eL) and M; = R;+(100) . It will be shown
i i) [l
in Section 3.1 that the depth of the i’th head, Z;, can be estimated from the
image by measuring the radius r; of the ¢’th head. That is because, the relative
size of a head corresponds to its relative distance from the camera.

Note that the normals NV; determines the direction of ) regardless of the
depth information, {r;}? ;. This can be seen by expressing P; by its projection,
p; & K - P;, on the image plane, i.e. P, = Z; - K~ ! - p;, and then writing the
above as

(K™Y pi- Zi) x (Ri - K™ - pi - Z) (K™ pi) x (R - K" - py)

N; = = .
(K= pi- Zi) x (Ri - K= - pi- Zi)ll,  [[(K71-pi) X (Ri- K1 - pil

Thus, another possible method to solve for @) is to find the direction of @) by
applying SVD on the homogeneous equations of the first constraint N, - @Q = 0.
This option is more stable as the estimated direction of @) is not affected by the
errors in depth (face radius) measurements. The magnitude of @) can then be
determined by using (Q — P;) x (R; - P;) = 0. The last equation yields a set of
linear equations in the magnitude of (). This step requires the depth information.
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Depth Estimation The suggested method requires a depth estimation for each
head, which is computed from the radius of the head in the image. Specifically,
a circle that is centered on the nose and covers the eyes and mouth will be
estimated. Let §; be the radius of the ¢’th face and r; be the radius of that face
as measured in the image by the face detector. In addition it is assumed that
there is an average face size, §, and that §; = 4. The projection of the head and
the camera on the X 7 plane is illustrated in Figure 1(b). From this figure it can
easily be verified that 7; = % -/ [% + (x; — up)?. Similarly, the projection on
the Y Z plane yields Z; = % /& + (yi — vo)2. Since the data is noisy and K is
only approximated, the depth is estimated as the average of the two expressions
above.

Planar Approximation The depth can be corrected when heads lie approx-
imately on a plane in R3. Assuming the plane is represented by a vector L =
(a b c)T A point P = (X Y Z) € R3 is on the plane iff P” . L = 1. Dividing

(K~'zp)T-L _ 1
by the depth and using P = Z - K~ ! - p, it can be written as + =

Let matrix P = (p1 P2 . pn) be the image positions of all the heads. Then, the
following is obtained:

(KPP L=(z 2 7)- (3)

By applying the pseudo-inverse, ((K~! -P)T)T, on (3) the parameters of the
plane are estimated and then a new estimation for the depths is obtained. The
plane and the corrected depths are reevaluated whenever the estimates for K or
U change.

Estimating the Yaw and Pitch from @ Given an intersection point @ and
an estimated head position, P;, the yaw and pitch angles can be computed.
The coordinate system of the i'th head when directed towards the camera is

represented by the unit vectors, ()_(io 5_/1-0 Zio )T. They are computed as,
50 P; ZO xY =

—___ "t 3O _ Pk A O
CE R N T e o) O = 20X X,

where Y is a unit vector in the direction of the Y axis of the main coordinate
system (the camera coordinate system), i.e. (0 -1 0) . Rotating Z© yields

_ — P _
ZQ: Q @ :Ric"Rw"Rro"Z‘O-
i HQ — Pz”z pitch,i yaw,i 11,4 i

The estimators for the yaw and pitch angle, &;(Q, K, p;, ;) and Bi(Q, K, p; i),
are given by,

&i = tan ! @ and Bz = tan ' — §ZZQ7YiO> -
(7.7) (077 20) (50
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A Special Case: “Say Cheese” — the Camera is the VIOA When all
the observers look directly at the camera, e.g. when taking a group photo, each
of them appears in the image in frontal view, i.e. R; = I for 1 < i < n. In this
case the VIOA is the camera, i.e. Q = 0. Therefore, (1) becomes 0 = P; x P,
for 1 < i < n. Thus, the geometric constraint on attention rays can not be used
to recover K. In this case our method will detect the MA event but the 3D
reconstruction will be known up to K.

4 Mutual Awareness in the Wild

The set of measurements, U, that was obtained by face detection and head-pose
estimation algorithms might be noisy. In general, nothing is assumed on how
those algorithms work internally. Thus, a reasonable approximation for the noise
in measurements is that they are i.i.d normal variables. Therefore, the probability
for an MA event given the measurements is proportional to the probability of
the noise in the measurements given that MA event (Bayes rule).

Following from the above assumption: U; ~ N (u;, X;) and p; is estimated by
U; = (ﬁi 7 Q4 BZ %)T that satisfies constraint (1). The noise in p; is assumed to
be very small compared to the other measurements and therefore is ignored. The
roll angle, ~;, is eliminated as it does not affect the direction of the attention
ray. Thus, given a VIOA point, ), and a camera’s calibration matrix, K, the
probability that the i’th observer is indeed looking at @) satisfies:

2
o Tz, o7,

~\2 A\2 ~\2

log(Pr (Ui € MA|Q, K)) ((a";o‘i) G BB (i h) ) (4)
The standard deviations, o = {0,,,0p,,0,}1"1, can be estimated empirically
using the selected algorithms for face detection and pose estimation. The above
sum has a x?2 distribution. The maximum likelihood U; can be estimated given
@ and K. When 7; is given, e.g. in the case of planer approximation, there is a
closed form solution for é&; and f; (as shown above). Thus, in the general case
U; can be obtained using a single parameter optimization on 7;.

In the general case only a subset of the observers participate in the MA event.
The probability of the subset, U’, of the observers is a product of the observers’
probabilities. Taking its log results in a sum of x? random variables which is
also has x? distribution. Thus, in order to accept or reject an MA hypothesis
the x2-test is used with respect to U’. The MA event is likely occurring if the
x? probability is above a desired confidence level T, \2- First the entire set U is
tested and if the test fails then a subset without the least probable observer is
re-tested. The elimination of observers stops when the confidence level has been
reached. This procedure is denoted by Y2-FILTER(U, UQ,U, T\2) and its result
can be used as a score in the process of estimating the MA event’s parameters.
The MA event, in the special case when the camera is the VIOA, is detected or
rejected by simply calling x2-FILTER(U, U, o, Ty2) .

A general maximization algorithm can be used for this purpose. It is expected
to converge to the global maximum if its initial guess is close enough. The max-
imization is done with respect to a score which is taken to be the number of
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observers in the subset and their x? probability, i.e.
score(U', Q, K) = [U'| + Pr (U']Q, K) . (5)

If the internal calibration of the camera, K, is unknown it is estimated using
a general maximization algorithm as above. In each iteration a value of K is
being tested and the best @ needs to be found. To find such @ the RANSAC
algorithm is used to obtain many @’s. Each such @ is obtained geometrically
from a small random subset, U’, of the observers by the following procedure:

procedure GEOMETRIC-MODELING(U, U, K,0,T,z2)
score’ + 0
repeat
score = score’
Q + ESTIMATE-VIOA(U', K)
UQ < ENHANCE-MEASUREMENTS(U, K, Q, o)
(U”,prob) + x*-FILTER(U, Uqg, 0, T 2)
score’ + NUM-OF-OBSERVERS(U"') + prob
if score’ > score
then U =U"
until score’ <= score
return (U’, Q, score)

Starting from U’, this procedure tries to find  and a subset that have the largest
possible score. It iterates to find the largest subset U’ that is most likely. It finds
the VIOA (Q) of the subset U’ and then for every observer it maximizes the
likelihood using a single parameter maximization over the depth which results
with optimal depth and head pose according to the estimated VIOA, UQ. Then
it checks all the members of UQ to find the largest subset U” C U agreeing with
(2 and which has probability above T}2.

When a reasonable (K, Q) pair has been obtained, e.g. detection of an MA
event of 3 observers, it is taken as the initial guess in a fine tuning algorithm.
The fine tuning here is another general maximization algorithm that searches
for the (K, Q) pair with the largest score.

5 Experiments

To validate our method three types of experiments were conducted. Simulations
were performed to understand the behavior of the minimization w.r.t. the score
(5). In the experiments the method was tested on real images obtained from the
Internet of scenes with VIOA. Common assumptions on the perspective model
were made, i.e. no skew, the principal point is in the center of the image and
that the ratio between f, and f, is known (in our case 1).

5.1 Simulations

The method strongly depends on the selected face detection and pose estimation
algorithms. Each instance of those algorithms hes its own noise to the measure-
ments. Following is a simulation that demonstrates the expected performance of
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the method regardless of the selection of specific algorithms. In Figure 2(a)-(b)
the method was applied in common situations with varying levels of noise in the
measurements. Each curve represents the score as a function of the focal length,
where the true focal length is at 4.6. As the noise increases, the ability of the
algorithm to converge to the correct result decreases. When the VIOA is the
camera, the method can not recover K. Figure 2(c) demonstrates the perfor-
mance as a function of the X coordinate of the VIOA. As X moves further from
zero the ability of the algorithm to find the right focal length improves.

—0.0
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0.21
0.31
0.41
051
——061

Scare w.rt. Measurements
Score w.r.t. Measuremnents

——0s
— 04

2 2 3

) 10
Focal Length

(a) (b) (c)

Fig. 2. Simulation of a search over K (f) and its associated score (eq-5) for: (a) different
levels of noise in the angle’s measurements; (b) different levels of noise in the depth’s
measurements; (c) different locations of the VIOA near the camera.

8 10
Focal Length

5.2 Real-Data

The method was implemented in C++ using the OpenCV library and MATLAB.
First the head pose algorithm of [12] was applied to the image. In addition the
OpenCYV implementation of the Viola-Jones algorithm was applied to the image
to refine the estimate of the size of each head. It was noticed that there are
false detections of heads or gross errors in head pose estimation. To address this

the algorithm in Section 4 was used, where the size of a subset drawn by the
RANSAC algorithm is 3.

Pose Estimation and Face Detection Algorithm The face detector and
pose estimator that we have used® uses a convolutional network [12]. This method
estimates only two angles: the yaw angle, a,, and a second angle, p. The second
angle corresponds to the roll angle while in frontal view but corresponds to the
pitch angle for profile view. Specifically, the pitch is only partially estimated
by 8 = sin(«) - p + (1 —sin(a)) - Bp and the roll is only partially estimated by
~v = cos(a) - p+ (1 — cos(a)) - vo, where By and vy are unknown. Thus, when
the yaw angle is +7/2 the roll angle is completely unknown and the pitch angle
is estimated with no corrections. When the yaw angle is 0 the pitch angle is
completely unknown and the roll angle is estimated with no corrections.

3 with the kind permission of the authors.
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Therefore, the roll and pitch angles are estimated as closer to zero than
they actually are. This causes their standard deviation to become larger. In
addition, the method is more accurate (has a smaller variance) for small yaw
angles and noisier for large ones. Those characteristics of the standard deviations
are modeled by the algorithm.

As a consequence of the large uncertainty in the pitch angle the estimated
vertical position of @, @)y, is less accurate.

Detection of an MA Event The detection of an MA event is a major capa-
bility of the method. In the following experiment a simple MA event was tested,
the one where the VIOA is the camera. When the VIOA is the camera the yaw
angle is expected to be zero. The squared deviation of the measured yaw from
zero is the score of a face. The total score of an image was obtained by the sum
of the scores of all detected faces divided by the variance (¢ = 9°). The maximal
subset of faces from each image was selected such that the x2-test of the their
score was above 0.95. In the experiment, a set of 68 images were collected from
the Internet (included in the supplementary material [18]) and manually classi-
fied w.r.t this MA event. As a result, a subset of 43 the images was classified as
positive. The two subsets are shown in Figure 3(a). Each image is represented
by the number of detected heads and the number of heads that were classified
as looking towards the camera. As can be seen, there is a good separation be-
tween the two classes. A negative example is shown in Figure 3(b) in which the
location of the VIOA is close to the camera. On such an example an automatic
separation is expected to be inconclusive.

+  Images with VIOA at camera N
©  Images with No VIOA at camera +

Murnber of Heads Looking at the Camera

0 10 2 30 40 s B 70 81 90 100
Nurmber of Detected Heads

(a)

Fig. 3. (a) Detection’s quality of the MA event when the VIOA is the camera. (b) An
extreme example of an image with a VIOA close to the camera (pointed by an arrow)

The General Results The method was tested on images obtained from the
Internet of scenes with VIOA. The results are shown in Figures 4, 5 and in the
supplementary material [18]. In each image, the face of each detected person is
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circled with a red circle. The radius of the circle indicates the size of the face
which is proportional to its distance from the camera. Within the circle there is
a triangle that indicates the yaw, pitch and roll angles. A face is circled with an
additional white circle if it belongs to the group that is attending to the VIOA.
In each image a white box has been inserted to indicate the structure of the
reconstructed scene. For clarity reasons, for few images only the projection on
the X Z plane is shown. In each box an observer is represented by a black circle,
the blue lines are the attention rays, the VIOA is the intersection of the red
lines, which connect the VIOA with the nearest point on each attention ray. The
red circle at the X Z origin (0,0) is the position of the camera. Since it is quite
common that observers are captured in a vertical body posture the rotations
w.r.t. the yaw and pitch angles are aligned with the x and y axes of the camera
coordinate system. Note that because the pitch angle is not estimated well by
the head pose estimation algorithm that was used, the detected VIOA has an
inaccurate Y position.

In Figure 4 a group photo was taken by two cameras. The observers were
looking towards one camera, while the algorithm was applied to the other one.
The algorithm was applied to this image twice: the first time while assuming
that the heads are on a plane and the second time when such an assumption is
not made. The image’s projection of a grid on the detected plane is drawn. The
left box is the result when the planar assumption is not made, while the right
box is the result when the planar assumption is made. By comparing the two
boxes it is clear that the planar assumption significantly enhances the recovery
of the scene structure as the four rows of people can be seen clearly. It appears
from the scene structure that this group is facing another camera which is not
seen in the image. The algorithm estimated the FOV of the camera as 36°.

Four other setups can be seen in Figure 5 including VIOA within the image,
temporal aggregation of attention in a video and the detection of an MA event
without the calibration matrix in the case the camera is the VIOA.

6 Discussion

In this work we have defined the problem of mutual awareness (MA). We have
demonstrated experimentally that it can be solved using off the shelf software.
An important byproduct of the algorithm is the recovery of sparse scene structure
and the internal calibration matrix of the camera. The algorithm was tested on
images from the Internet of scenes exhibiting VIOA. This method can be applied
in a general environment. It therefore frees its users from defining a strict setup
when observing human behavior.

In addition, the geometric constraint, which is presented in this work (VIOA),
can significantly reduce the size of the training set, used by previous works [4, 5,
8,9]. The training data-set, which enables the detection of the most likely VFOA
of a new observer, must densely cover the space of position pairs, i.e. observer po-
sition and VFOA position. However, using the geometric constraint the training
data-set should cover densely only the VFOA positions. By including, for every
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Fig. 4. A large group with a VIOA outside the field of view of the camera (should be
viewed in color). See text for details.

VFOA, only few examples in sparse positions the VFOA of a novel observer is
the VIOA of those training examples and the novel observer.
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