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Abstract

The estimation of probability densities from data is widaked as an
intermediate step in the estimation of entropy, KullbadiHler (KL)
divergence, and mutual information, and for statisticaksasuch as
hypothesis testing. We propose an alternative to denstignason—
partitioning a space into regions whose approximate pritibamass
is known—-that can be used for the same purposes. We call tkese
gionshyperspacingsa generalization afpacingsn one dimension. Af-
ter discussing one-dimensional spacings estimates obpntind KL-
divergence, we show how hyperspacings can be used to estiirese
quantities (and mutual information) in higher dimensio@sr approach
outperforms certain widely used estimators based on irgdiaie den-
sity estimates. Using similar ideas, we also present adistsibution-
free hypothesis test for distributional equivalence that comapdavor-
ably with the Kolmogorov-Smirnov test. Using hyperspasingis eas-
ily extended to multiple dimensions.

1 Introduction

Many problems in machine learning involve the estimatiomfifirmation theoretic quanti-
ties such as entropy, Kullback-Leibler (KL) divergenceg amutual information in contin-
uous probability spaces. A first step toward calculatingé¢hguantities is often estimating
a probability density over one or more (possibly multiveg)Jarandom variables. Exam-
ples include estimation of joint and marginal densitiesntage registration problems as
part of mutual information estimation [14] and estimatidmarginal densities in order to
estimate marginal entropies in Independent ComponentlysindICA) problems [11].

It is not essential to estimatedensity, however, before estimatingntropy or other in-
formation theoretic quantities from a sample. Using meshimaked omrder statisticsand
spacings(defined below), the entropy of a one-dimensional randonabbe can be di-
rectly estimated without an explicit density estimate [1Bhese estimates are consistent
and asymptotically efficient [2], and have been exploiteddutions of the ICA problem
[3, 9]. Recently, the concept of spacings was extended toehidimension and applied to
the problem of entropy estimation [8]. Another class of epgr estimators that sidestep
density estimation has been developed using so-catiedpic spanning graph$].



Here we build on previous work with spacings and their gdigaton to multiple dimen-
sions [8]. We start in Section 2 by reviewing entropy estiorain one dimension. We then
introduceNear Uniform PartitiongdNUPs), which provide a simple conceptual framework
for this family of estimators and lead to a novel algorithm Kd_-divergence estimation.
In Section 3, we introduce hyperspacings, an attempt taeidPs in higher dimensions.
In addition to algorithms for multidimensional estimatiohentropy and KL-divergence,
this provides a new method for estimating mutual infornmatisVe compare our entropy
estimator to a standard technique based on density estimat&ection 4, we show how
a spacings algorithm for estimating KL-divergence suggastatural hypothesis test for
whether two samples come from the same distribution. LilkeKblmogorov-Smirnov
test, this test iglistribution free but being based on NUPs, it can be generalized to arbi-
trary dimension. We conclude by comparing the two testsrirukitions.

2 Spacings estimates of entropy and KL-divergence

Consider a scalar random variable and a random iid sample af denoted by
z%,72,...,ZN. Theorder statisticsof a random sample of are simply the elements of
the sample rearranged in non-decreasing ordét:< z(2) < . < ZMN) (c.f. [1]). A spac-
ing of order m or m-spacingis then definetito beZ(+™ —z() for 1 <i <i+m<N.
Them—spacing estimator of entropy, due to Vasicek [13], is def'mned

Fin(Z, .. 2) = NzT og (2™ -2 o)

To gain insight into this estimator, note that &ty random variable Z with an impulse-free
density [§-) and continuous distribution function(B, the following holds. Lefp* be the
N-way product densitp* (22,22, ...,ZN) = p(ZY)p(Z?)...p(ZV). Then

Ep [PV —P(z)] = Nil Vi,1<i<N-1. 2)
That is, the expected value of the probability mass of theriial between two successive
elements of a sample from a random variableﬁﬁ. This remarkably general fact is a
simple consequence of the uniformity of the random varig®®), theprobability integral
transformof Z (c.f. [7]). Using this idea, one can develop a simple entrepiimator.
We start by approximating the probability densfifz) by assigning equivalent masses to
each interval between points and assuming a uniform digtoib of this mass across the
interval? DefiningZ(© andz(N+Y to be the infimum and supremum of the suppomp@),

we have: L
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for Z0) < z< Z(+1) Then, we can write
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IHere,spacingis defined as the length of an interval marked by order statistics. We wilteflen
the interval itself as apacingwhere convenient.

2The notion of a density estimate aids in the intuition belinespacing estimates. However, we
stress that density estimatignnota necessary intermediate step in our ultimate entropy estimator.
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The approximation(a) arises by approximating the true densitfz) by p(zZ?,...,ZN).
The approximatiorib) stems from the fact that we in general do not knd andz(N-+1),
i.e. the true support of the unknown density. Instead, wenftire entropy estimate using
only information from the region for which we have some imfation.

—
o
=

%

2.1 m-spacings and overlapping m-spacings

The estimatd?lsimmehas high variance inherited from the variance of the inigrababil-
ities (2). The variance can be reduced by considamrgpacing estimates, such as

- N+ 1 i i
Hmspacinézlw-w )= — N i 20 < Z(M(i+1)+1) Z(mu+1))) ) (5)

Whenm,N — o, & — 0, this estimator is consistent [2]. AsandN grow, the probability
masses fom-spacings concentrate around their expected values. Tdpegy holds foall
probability distributions with continuous cumulative wisution functions A modification
of (5) in which them-spacings overlap,

- 1 Nom N+1 _4 ,
H 7. 2N = —— ¥ log( —=(z™m —z0 6
overlap(Z™5 ..., Z") N—mi; Og< m ( ) )s (6)
further reduces the asymptotic variance and is equivateviasicek’s estimator (1) except
for constants adjusted to improve the small sample perfocmaThere is no specific den-
sity associated with this estimator, and yet this does nuotrdsh its performance. Next,
we introduce Near Uniform Partitions, which capture some@perties of spacings.

2.2 Near Uniform Partitions

Suppose we could put a grid on a probability distributiontsat the integral of the distri-
bution over each grid element was a constant. Such a “unif@rtition” might be useful
for estimating quantities associated with the distributiespecially expectations. Near
Uniform Partitions (NUPs) are an approximation to such a.gfio construct a NUP on
a space with respect to a probability distribution, we mging a set of mutually exclu-
sive and collectively exhaustive regions on that spacedteikely to have approximately
equivalent probability masse$he following definition formalizes this idea.

Definition 2.1 (Near Uniform Partition) Consider a probability spac€, #,P) and the
associated N-way product spat@N, FN PN). Let X= {X1,X?,...,. XN} € QN be a sam-
ple drawn according to B. LetR = R(X) be a partition of the outcome® into regions



{R1,R2,...Rk} which depends on the sample X, and hence is a random partitismg
P(Ri) as a shorthand forfz p(x)dx, we say that the random variable is an e-6 Near
Uniform Partition if, for a random draw oR,

Prob (m,ax
|

%—P(Ri)’>e> < d. @

Next, we make the followinglaim: that sets of non-overlapping m-spacings form a (non-
trivial) NUP for any continuous probability distributionConsider a sample of si2¢ =
mK — 1 along with the infimum and supremum of support of the diatidn. To establish
that the set oK non-overlappingm-spacings form a NUP, we must chooseamdd so that

(7) holds. We start with the fact that the distribution ofpability mass in amn—spacing is
given by a beta distribution with parametersindN + 1 —m[1], with expectatior}\lﬂ+1 = %

and varianc%%. Applying Chebyshev’s inequality gives
1 m(N+1—m)
Prob( | > — P(R; < .
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If all of the m-spacings have probability withinof their expectations, then the maximum
deviation of these probabilities is also wittdnso we can apply the union bound to obtain

mK(N +1—m) 1
< . 9
>e) SINTDENT2e = (N1 2)e ©
With large enougiN, we can choose andd arbitrarily small, establishing the claim. Next,
we see how NUPs lead to a conceptually simple algorithm foirdilergence estimation.
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2.3 KL-divergence estimation

Starting with the definition of KL-divergence between diattionsP andQ, we write

Y b p(x) 2 p(x) p(x)
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whereh(.) is the differential entropyg—g is the density oP with respect to the underlying
measure. This derivation can be interpreted in the following way representing the
probability law P in a space in which Q is uniform, the divange between P and Q can
be written as simply the negative entropy offPactically, we achieve this by representing
P under the NUP defined by the-spacings ofQ.

More explicitly, suppose we have samples from distribigiBrandQ, each of sizeN, and
we wish to estimat®(P||Q). The steps of the KL-divergence algorithm aj&Setm= /N,

b) Compute non-overlapping-spacings using samples @f c) Compute the histogram of
samples fronP, using them-spacings of) as bins, andl) Calculate the negative entropy
of this histogram to obtain a KL-divergence estimate. (Tdigorithm has computational
complexity O(NlogN) due to the sorting required to find the order statistics.)

The number oP samples in each histogram bin represents the amour pfébability”
(dP) for a fixed amount of change @ (dQ). Our confidence that each histogram bin has
a fixed amount of) mass comes from the fact that theespacings ofQ form a NUP. It

is interesting to note that this algorithm, since it depemdly on the ordering of the two
samples, is completely invariant to arbitrary monotonmn#inear!) mappings of the axes.
This is a property shared by the KL-divergence of the trugitistionsP andQ and hence
makes it an appealing property of the estimator. Note iriqasar that this property isot
shared by KL-divergence estimates based on kernel derstityagors.



Figure 1:Left, center: Hyperspacings foN = 4000 points for the uniform and standard
2-D Gaussian distributions. In each case, the hyperspadiage probability mass that
is approximately linear in the number of Voronoi regionsttb@mpose themRight: A
hyperspacing of radius 5. Our entropy estimator is basedreriapping hyperspacings of
this form, as opposed to the non-overlapping hyperspasingan on the left. NOTE: This
figure is best viewed in color.

3 Hyperspacings: spacings in multiple dimensions

Our next goal is to extend the benefits of spacings and NUPgtehdimensions. To do
so, we need to generate regions of multidimensional spatbspvedictable probability
mass. Next, we present two methods for generating suchmeffiom samples.

3.1 Voronoi regions and hyperspacings

Given a set of pointg!, Z2, ..., ZN in D dimensions, a set &foronoi regions \*,V2, ...,VN

is formed by associating with each poifitthe setv' of all points which are closer t@'
than to any other poiri!. Voronoi regions can be thought of as a generalization afisga
in higher dimensions. An entropy estimator similaiHgmpie (4) is obtained by assigning
to each Voronoi region a probability mass %)f distributing that mass uniformly in each
region, and discounting regions with infinite area (or voduim higher dimensions):

~ 1 ’
HVorfsimpIeE N_z Z _ log (NA(VI)) : (10)
Vist.ANV1)£e

HereA is the area of regiok}, andz is the number of Voronoi regions with infinite area.
Such an estimator can also be built fr@elaunayregions, the “duals” of Voronoi regions
[10]. In two dimensions, a Delaunay region is formed by cating the centers of three
mutually adjacent Voronoi regions. One important propeftypelaunay tessellations is
that each region is finite. The tradeoff, however, is that pacings estimates in one
dimension, only the convex hull of the sample is modeled. tMdghe algorithms we
present can be developed using either Voronoi or Delaurgipne, but we will usually
simply refer to the Voronoi version for brevity.

Just as the 1-spacing estimatdﬁsi(np“g was extended to then-spacings estimator
(Hmspacmg, we can extend the basic Voronoi entropy estimator to rediscvariance. In
one dimension, this was achieved by “pasting” togetherigants intervals into am-
spacing. InD dimensions, we paste together multiple Voronoi regions firyperspacings
Non-overlapping hyperspacings for two different disttibas are shown in the first two
panels of Figure 1. A single hyperspacing, used as part abthdapping hyperspacings
estimate, is shown on the right of the figure.



N=100 N=1000 N=5000
Distributions Hyper | ROT Hyper [ ROT || Hyper | ROT
Bias| o ||Bias| o ||Biag o ||Bias| o ||Biag o ||Bias| o
1D Gaussian |/ 2.0 [5.9]0.1 [5.6{/1.1]1.8]| 0.8 [1.7//0.4]0.7|| 0.4 |0.8
1D Uniform 4.0 |1.7| 6.7 |2.6|1.1]0.3| 5.0 |0.5|0.5|0.1)| 3.8 |0.2
1D Exponential ||10.3|9.9/| 5.2 {10.9|1.3 |2.3|| 8.5 |2.7|0.5 |1.4| 6.9 |1.5
2D Gaussian || 7.3 |2.6 6.3 |2.6{0.8[1.2]| 1.9 |1.1][0.2 |0.5]| 0.8 0.5
2D Uniform 5.3|1.4/4.2 |2.0|1.1|0.3|4.4 |0.4/0.6 |0.1] 3.6 |0.2
2D Exponential || 4.2 |6.9] 5.5 | 7.2]/0.9 |3.2| 6.1 |3.2|0.4 |0.9] 5.8 |0.9
2D Gauss x Exp|| 4.8 |6.8| 0.6 | 6.5(/1.0 [2.0] 1.4 |1.9|0.6 [0.9] 1.6 |0.9
2D Annulus  ||12.9(1.3/|32.3| 0.9/ 6.5]0.4{|22.2|0.4/ 3.6 |0.2||16.1|0.1
2D Hollow Square 7.9 {1.126.0| 1.0|| 2.3 |0.4{/16.8|0.3| 0.6 |0.2/{12.0|0.2
3D Gaussian |[16.7]3.7/[14.5| 4.2]|3.3|0.7|| 7.3 |0.9|1.5 |0.5] 4.7 |0.5
3D Uniform ||11.0{1.4{ 0.5 |1.4|/2.9|0.2/ 1.8 |0.3|1.6 |0.1] 2.1 |0.1
3D Exponential |13.1|5.5| 5.5 | 7.9|/2.3 |1.4| 1.2 |1.7||1.5 |0.9 0.2 |0.9

Table 1: Results of entropy experiments. The entropy of dithibution shown on the left
was estimated from samples (of size 100, 1000, and 500Q) thegrhyperspacings estimate
based on Delaunay tessellations (“Hyper”) and based on rmekéensity estimate with
Gaussian kernels, using Silverman’s “rule-of-thumb” ttreate the kernel size (“ROT").
The bias for each estimate is the mean absolute value pageedifference from the true
entropy. Distributions were chosen so that the true entt@my/a value of 2 or greatea
shows the standard deviation of each estimate as a pereeasfttge entropy. FoR = 100,
results are mixed between the two estimators, but for lavgeple sizes, the hyperspacings
estimate performs substantially better, with lower biad similar standard deviation on
both smooth and rapidly changing densities.

In constructing a hyperspacing, it is tempting to includg ®aronoi region whose center
is included in some Euclideanball of a particular point. However, this method of forming
hyperspacings gives clusters with more constituent Vanagions in areas of high density
than in areas of low density. Instead, we definedjacency metrion the set of Voronoi
regions by setting the distance between any two regidasdV! to be the shortest path on
the adjacency graph for the set of regions. The rightmostipzfrFigure 1 shows a typical
adjacency metric ball around a particular Voronoi regiohe Tise of an adjacency metric
makes the hyperspacings method of partitioning a disidhutlatively insensitive to the
underlying distribution, and allows the efficient compigatof hyperspacings.

Unlike m-spacings in one dimension, however, it is difficult to prdvat hyperspacings are
NUPs. Instead we note the following properties of hypersysc

1. For a uniform distribution on the unit hypercube , a sifgtperspacing (not in-
tersecting the boundary of the hypercube) witlsubregions has expected prob-
ability massj. According to our experiments in two dimensions, the stashda
deviation of this mass is already less than 10% of the exgdeauntess for a hyper-
spacing radius of only 4 (in the adjacency metric).

2. Every probability density with bounded partial derivaes is locally approxi-
mately uniform. Also, the probability mass in a hyperspgailoes not depend
upon the local height of a density, as long as it is unifdrifogether these imply
that the probability masses of hyperspacings are asyroptigtinvariant to the
underlying density at any particular location, as long &sdénsity is smooth.

3. Hyperspacings on densities with unbounded derivatigesstll be well behaved,

3This is a direct consequence of the invariance of Voronoi tessellatiatste [10].



Distribution 1 Distribution 2 Kol-Smir | Hyperspace
Uniform(u=0,0°=1) | Uniform(u=0,0° =0.9) 57 86
Uniform(u=0.1,0°=1) | Uniform(u=0,0% =1) 39 81
Normal{u= 0, 02 1) | Normal{u=0, 02 0.9) 9 6
Normalft=0.1,6°=1) | Normalu=0,0° =1) 48 6
3-modef1=0, 02 1) | 3-mode(1=0, 02 1.02) 81 44
5-mode(tl=0,0°=1) | 5-modef(i=0,0° = 1.02) 94 99
7-mode(1=0,0°=1) | 7-modefi=0,0° = 1.01) 59 100

Table 2: Results of hypothesis test experiments for the &dD tA sample of size 1000
was drawn from the pair of distributions in each row. Underthull hypothesis, the distri-
butions are the same. The power of the tests (shown in col@namsl 4) are the rejection
percentages for the null hypothesis out of 1000 runs adithe).05 significance level. The
higher power test is shown in bold in each case.

as long as the number of hyperspacings which contain shampitions is small
relative to the total number of hyperspacings.

In summary, we shall assume that hyperspacings are “clasegbiito NUPs to be useful,
and we shall let them adopt the rolesnafspacings in our higher dimensional estimators.

3.2 Entropy experiments and mutual information

Using overlapping hyperspacings as surrogates for ovyarigpn-spacings, we formed an
entropy estimator for distributions in arbitrary dimensithat is essentially equivalent to
Hoverlap (6). We conducted experiments to evaluate our entropy agimin one, two,
and three dimensions. We compared against Silverman’s-ofithumb” estimator [12],
which is a fixed kernel estimator. Results in Table 1 show tluatestimator outperforms
the Silverman estimator for larger samples, and is compafab small samples. Setting
=log(N), our 2-D estimator ig)(NlogN), since 2-D Voronoi regions can be computed

in O(NlogN) [10]. We do not yet have complexity results for higher dimens.

It is well-known that the mutual information between twodam variables can be written
ash(X) +h(Y) —h(X,Y), whereh(-,-) is the joint differential entropy [4]. With an esti-
mator of both one and two-dimensional entropies, it is ea®stimate mutual information
simply by computing each of the constituent entropies. We affer another application
of our KL-divergence estimators.

4 A distribution-free test of distributional equivalence

The KL-divergence estimator described in Section 2.3 candael to form a simple hy-
pothesis test of distributional equivalence, i.e. wheth&r samples were drawn from the
same distribution. The idea is to estimate the KL-divergémetween two samples and
see whether it exceeds a particular threshold. Since Kergance is minimized when two
distributions are equivalent, this is a natural test. Ow@-dimensional hypothesis test, like
our KL-divergence estimator, distribution-freein the sense that an arbitrary monotonic
transformation of the coordinate axes will not affect ithéeéor. We stress that this is true
for any sample sizeAs with the Kolmogorv-Smirnov (KS) test [7], the criticahles for
this testdo not depend upon the distributions being testdce the distribution over the
test statistic is equivalent under the null hypothesigsipective of the distribution. This

“4We found that theymmetric divergen¢®(P||Q) + D(Q||P) produced a more powerful test than
the simple KL-divergence.



is true because the test statistic is only dependent upoartieging of points in the two
samplesand this does not depend on the densities themselves, lyutrotheir ratio.

To obtain critical values (at the = 0.05 significance level) for our hypothesis test, we
computed the test statistic over 50,000 trials, using 1@@@ptes from each of two uniform
distributions on each run. We compared the power of our testlze KS test by evaluating
the rate of rejection of the null hypothesis under sampliognfthe pairs of distributions
shown in Table 2. The power of our test was higher in the migjoficases we examined.

In addition, our test generalizes elegantly via hyperspggio higher dimensions, although
it is no longer strictly distribution-free. Our initial tesscompared to 2-D extensions of the
KS test [5] suggest that our test is more powerful for somgitigion pairs and less for
others. An example for which it outperforms [5] is in detagtithe difference between a
uniform distribution rotated at 45 vs. 55 degrees. Herepthwer of our test was 52 vs. 18
for [5]. We note that our algorithm i©(NlogN) in 2-D vs. a complexity oD(N?) for [5].
Further investigations of the multidimensional tests aefefbr future work.

4.1 Summary

The central idea in this paper is that spacings have ceristiritadition-free properties, and
that these properties can be extended to higher dimensioas,approximate fashion, via
hyperspacingsWe have presented new competitive algorithms for KL-dje@ce estima-
tion and hypothesis testing in one dimension, and new nimlédsional algorithms for
these quantities, as well as entropy and mutual informatisimg hyperspacings.

References

[1] Arnold, B., Balakrishnan, N., Nagaraja, A.First Course in Order Statd\iley & Sons, 1992.

[2] Beirlant, J., Dudewicz, E. J., G¥fi, L., van der Meulen, E. C. Nonparametric entropy estimation:
an overview|nternational Journal of Math. Stat. S, pp. 17-39, 1997.

[3] Bercher, J.-F. and Vignat, C. Estimating the entropy of a signal vgftieations|EEE Transac-
tions on Signal Processingg, pp.1687-1694, 2000.

[4] Cover, T. M. and Thomas, J. Alements of Information ThearWiley & Sons, 1991.

[5] Fasano, G. and Franceschini, A. A multidimensional version of thienkgorov-Smirnov test.
Monthly Notices of the Royal Astronomical Soci@Bb5pp. 155-170.

[6] Hero, A., Ma, B., Michel, O., Gorman, J. Applications of entrogd@sning graphdEEE Signal
Processing Magazine (Special Issue on Mathematics in Imadifgpp. 85-95, 2002.

[7] Manoukian, EModern Concepts and Thms. of Math. Sthtew York: Springer-Verlag. 1986.

[8] Miller, E. A new class of entropy estimators for multi-dimensional dies International Con-
ference on Acoustics, Speech, and Signal Proces30g8.

[9] Miller, E. and Fisher, J. ICA using spacings estimates of entrBpyrth International Sympo-
sium on Independent Component Analysis and Blind Signal Separ2€io8,

[10] Okabe, A., Boots, B., Sugihara, K., and Chiu, S Spatial Tessellations: Concepts and Appli-
cations of Voronoi Diagrams, 2nd EditipWiley & Sons, 1992.

[11] Pham, D. T. Blind separation of instantaneous mixtures of sowiaegn independent compo-
nent analysislEEE Transactions on Signal Processidd, pp.2768-2779, 1996.

[12] Silverman, B. WDensity Estimation for Statistics and Data Analysifiapman & Hall. 1992.

[13] Vasicek, O. A test for normality based on sample entrdpyroyal Stat. Soc., Ser. B8, pp.
54-59, 1976.

[14] Viola, P. and Wells 11I, W. M. Alignment by maximization of mutual infoation.Proceedings
of IEEE International Conference on Computer Visipp. 16-23, 1995.



