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Abstract— The differential entropy is a quantity employed ! T
ubiquitously in communications, statistical learning, physics, and ol + J
many other fields. We present, to our knowledge, the first _ _ L
non-trivial probabilistic upper bound on the entropy of an 0l Possible rue cumufaive . i
unknown one-dimensional distribution, given the support of the + ﬁ
distribution and a sample from that distribution. The bound is 0.7 Upper bound — 1
completely general in that it does not depend in any way on the \ ! N
form of the unknown distribution (among other things, it does oer 4 i

not require that the distribution have a density). Our bound uses
previous distribution-free bounds on the cumulative distribution
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function of a random variable given a sample of that variable. oal /| *\ ,
We provide a simple, fast, and intuitive algorithm for computing r . Empirical cumulative
the entropy bound from a sample. 0.3} A g
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I. INTRODUCTION ‘ l ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Let X be a one-dimensional random variable with dis-
tribution F(x) and support . For our purposes, the
distributi () d Ep [yL’é/R] . p p. d .Fig. 1. This figure shows a typical empirical cumulative disition (blue).
istribution need not have a density. However, if a densige req stars, which we call pegs, show us the probabiligtintis provided

exists, we will refer to it asf (x). by Equation 2 on the true cumulative. The green curve showssilgitity for

If a density exists, Shannon's differential entropy ofis the true cumulative distribution that satisfies the constsadf Equation 2.
defined to be

Il. THE BOUND

HX:—/wfoofxdx. 1
(X) —oo (x)log f(x) @ Given n samples, x; through x,, from an unknown dis-

tribution F(x), we seek a bound for the entropy Bf Our
If there are discontinuities in the distribution functi®(x), approach will primarily be concerned with the order statst
then no density exists and the entropy-is. of that sampley; throughy,. We assume that the distribution

It is well known [2] that the entropy of a distributionhas finite support and that we know this support. For ease
with support[y.,ygr] is at most logyr —yi), which is the Of exposition, we label the left suppospy and the right
entropy of the distribution that is uniform over the supporsupportyn.1 making the support values act like additional
Given a sample of siza from an unknown distribution with order statistics of the sample. But this is done merely for
this support, we cannot rule out with certainty the posisjbil Notational convenience and does not imply in any way that
that this sample came from the uniform distribution oves ththese are real samples of the random variable.
interval. Thus, we cannot hope to improve a deterministic We start with a bound due to Dvoretzky, Kiefer, and

upper bound on the entropy over such an interval when nothiplfowitz [4] on the supremum of the distance between the
more is known about the distribution. empirical n-sample cumulativefs(x), and the true distribu-

However, given a sample from an unknown distribution, wio": ,
can say that it isinlikely to have come from a distribution with P(suplF (x) — Fa(X)| > €) <262 =aq. 2
entropy greater than some value. In this paper, we formalize X
this notion and give a specific, probabilistic upper bount@ihus, with probabilityat least a, the true cumulative does
for the entropy of an unknown distribution using both theot differ from the empirical cumulative by more thanThis
support of the distribution and a sample of this distribatio
To our knowledge, this is the first non-trivial upper bound *We will assume for the remainder of the paper that 3, as this will

on differential entropy which incorporates informationrfr a  SPIfy certain analyses. ,
| d b lied di . | bili The order statisticys,Y2,...,yn Of @ samplexs, Xz, ..., X, are simply the
sample and can be applied to any one-dimensional probyabilityes in the sample arranged in non-decreasing order. Hemcis the

distribution. minimum sample valuey, the next largest value, and so on.



is a distribution-free bound. That is, it is valid for any ene * +

dimensional probability distribution. For background arcls 4| + |

bounds and their uses, see [3]. vk
There is a family of cumulative distribution curveswhich %8 )

fit the constraints of this bound, and with probability atstea | +

a, the true cumulative must be one of these curves. If v +

can find the curve irC with maximum entropy and computeos| ]

its entropy, then we have confidence at leadhat the true N

entropy is less than or equal to the entropy of this maximu’®| *

entropy distribution. 04l :
Figure 1 shows the relationship between the empiric +

cumulative and the bounds provided by (2). The piecewi®®| |

constant blue curve is the empirical cumulative distritwti ,,| |

based on the sample. The red stars show the upper and lo o

bounds on the true cumulative for some particglarhe green °if + )

curve shows one possibility for the true cumulative disttion |/ + ‘ ‘ ‘ ‘ ‘ ‘

that satisfies the probabilisitic constraints of EquatiorOgr  ° 05 ! 15 2 25 8 35 4

goal is to find, of all cumulative distributions which sayisf

these constraints the one with the greatest entropy, and tl:fhé?c;uz.h tr'}’:”if;g Sﬁ%\t}h t?:uzgd;] é’fsilrirllooig tsrgrg éhhtet r?ée;':))l(iimreaded

to calculate the entropy of this maximum entropy distribnti St i e e oo botnd (2)_9 TRy
Note that in figure 1, as in all the figures presented, a very

small sample size is used to keep the figures legible. As ¢ 1 ; .

be seen from equation 3, below, this results in a loose bour | . |
In practice, a larger value far drives the bound much closer .
to the emirical cumulative (witke tending to zero), with a  os- ]
corresponding improvement in the resulting entropy bound. ol N R ’ + |
For a desired confidence leve| we can compute a corre- AW T~
spondinge from Eq. 2 that meets that level: 06 N N g
In=a g ost . ’ .
]2 N
£= 52 @ . + ™S |
Empirical cumulative
We conclude that with probabilitg, the true distribution lies  oa} ) ‘\ 1
within this € of the empirical distribution at alk. Knot point
0.2 —
+ + 4———————— Lower bound
A. Pegs o A 1
The pointsu; = (yi, 71 +€) (resplli = (yi, 717 —€)) describe oL— : - - - : - : = A
a piecewise linear functiofy (resp.,R) marking the proba- X

bilistic upper (resp., lower) boundary of the true cumuiati
F. We call these points the upper (IOW@%S' and note that Fig. 3. This figure shows the maximum entropy cumulative distiim which
we clip them to the rangg0,1]. Also, our knowledge of the fits the constraints of the Dvoretzky-Kiefer-Wolfowitz meality for the given

support of the distribution allows us to takg = lg = (y()?o) empiric_al cu_mulativg distribution. Notice th_at the c_umulet_iis piep_ewise
linear, implying a piecewise constant density function. Wirobability at

anduni1 =lIny1 = (Yn+1’ 1)- ) o leasta, the true cumulative distributioF has entropy less than or equal to
The largest of the entropies of all distributions that fathis maximum entropy distribution.

within € of the empirical cumulative (i.e., entirely betweBpn
and R) provides our desired upper bound on the entropy of ) )
the true distribution, again with probability. The distribution entropy estimate of loqg —y1) (¢ = 1), so in some sense our

that achieves this entropy we c&. algorithm produces a bound between these two extremes.
To illustrate what such a distribution looks like, one can
imagine a loose string threaded between each pair of pegs  !ll. THE STRING-TIGHTENING ALGORITHM

placed at they; andl;, as in Figure 2. When the ends are We first develop several properties Bf; that provide the
pulled tight, the string traces out a distribution which,ves basis for our algorithm, which we call the string-tightegin
show below, has the greatest possible entropy of all sualgorithm.
distributions. Since this distribution turns out to be pietse Lemma 1: Ry is linear between consecutive order statistics.
linear, its entropy, which again is the probabiliybound on Proof: Although the true distribution may have dis-
the true entropy, is easily computed. continuities, the entropy of any such distibution-igo. We

It is interesting to note that extreme valueseaforrespond therefore can restrict our search fgy to those distributions
to the empirical distribution itselfe(= 0), and to the rize with densities.



First we must show that the bound (2) allowg to be *
linear. That is, we must show that the curve between tv,,
consecutive order statistics is not restricted by the baamd
that it cannot be linear. To do this, it suffices to show that t°8f
bounde is always larger than the step si?;én the cumulative _| A

. . . . .. . Upper candidate
distribution. The bound is minimum when= 0, so we have
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Must bend down at
lower candidate to pass

0.31- through here

0.2 B
+ + Lower candidate

Given that itcan be linear, we next show that ftust be
linear between consecutive order statistics. The proofyis
contradiction. Suppose that between two consecutive or¢ o;——— ‘ : : : : _‘
statistics,y; andyi.1, Fv is not linear.

Note that _the er!tropy function is separable'lnto mtegrall—"lsg. 4. The upper and lower candidate pegs define a wedge. Tdte fi
over the region of intereg;,yi 1] and the remainder of the subsequent pair of pegs that are both on one side of the weetgemne

01 " J

real line [yi,Yit1]: whetherRy must bend down at the lower candidate, or bend up at the upper
Viel candidate.
HFu)= — / i (x) log fu (x)dx
Yi
_ / f () log fiv (X)dx. (Yi+1,€), with u; > b and b below the segmenty;_1,a) —
Vi Vi1 (Yi+1,¢) (i.e., the slope increases &;,b)). Then there is

Because of this separability, conditioned on specific \@lugn interval [y — 8.y, +_5], ¢ >0 where the line segment
for fw(yi) and fu(yiz1), fu must maximize each of the termstm(¥i —8) —Fu(yi +9) lies entirely betweer andF,. The
above separately. argument of lemma 1 shows that this segment maximizes the
Let 7 be the set of all monotonic non-decreasing functiortropy onyi —&,¥i + 8], and thushy, being maximal, cannot
over [yi,yi+1] such that if f € 7, then f(y;) = fu(y;) and Pass through(yi, b), contradicting the assumption. A similar

f(Yir1) = fm(Yis1). Also, letC = fy(Yii1) — fm(yi). Then argument applies for a decrease in slope. u
Thus Ry is completely described by the sequence of pegs
Yit1 that it touches, which we call thknot points. The string-
agmax- | f(x)log f (x)dx (4)  tightening algorithm is a left-to-right search for knot pts,
Vit starting with the known first knolp, as follows.
= agmax- | f(x)[logf(x) —log(C)Jdx  (5)  Given a knotK (except the last knotin,1), we define a
Iyi+1 £(x) reachable peg as any pegP to the right ofK for which the
= argmax— / f(x) log ——=dx (6) segmentKP is contained betweef andF,. The candidate
fer Jy c upper (lower) peg is the rightmost upper (lower) reachable peg
— argmax- Vi f(x) log f(x) dx. (7) (i-e., the one with highest index). Lemma 2 ensures that one

C of these two candidates must be the next knot to folkkw
. If the upper candidate isn. 1, it is added as the final knot.
The last expression is just the entropy of the distributiotherwise, to determine which is the knot, consider all the
g(x) = ‘%, which is a properly normalized probability dis-pegs to the right of the two candidates. As shown in figure 4,
tribution over [y;,yi11]. It is well-known [2] thatg(x) must the rays from the knot to the upper and lower candidate pegs
be uniform to maximize entropy over a finite interval. Thiglefine a wedge, and for each sampjeto the right of the
in turn, implies that f(x) must be uniform to maximize candidates, neither of the pair of pegsor |; can lie within
(4). Hence, ifFy is not linear betweery; andyi.1 then it that wedge (by the definition of the candidates as the rightmo
cannot be the entropy maximizing distribution, contrdadgt such pegsﬁ_ Sinceuny1 = Iny1, there must be a at least one
our assumption. B pair of pegs that are both on one side of the wedgej betthe
ThusFy is piecewise linear, with any “bends”, or changesmallest index of all such pairs. Iif is above the wedge, then
in slope, occuring only at the sample points. Intuitivelg, athe slope ofy must increase after passing the upper candidate
the string is tightened, it is clear that these slope chaoges in order to pass betweeh and uj; thus by Lemma 2 the
occur only at the pegs, which we formalize here. candidate upper peg is the next knot. Otherwise, the catedida
Lemma 2: An increase (decrease) in slopefaf can occur |ower peg is the next knot.
only at the upper (lower) peg of a sample.
Proof: By contradiction. Suppose that there are two s, general, the upper and lower candidates can have differdizes, i.e.,
connected segments @v, (Yi-1,a) — (¥i,b) and (yi,b) — one of them may be further “right" than the other.

feF Vi C



Fig. 5. Bound (2) is too loose near the edges. Fig. 6. Empirically generated bounds are tighter than thdgengby the
bound (2). The jagged line is one of the many possible cumelatihat
satisfy the bounds.

This process is repeated until the final knat,, is added.

The segments connecting the knots foffy. Its entropy, o . -
which is our probabilitys bound on the entropy of the true®n the beta distribution of each order statistic, and verify

distribution F, is easily computed from the spacings of th hat tfhﬁ frac_tioln of_ahl_argr? nurr;)ber r(;anqloml;ll generated szsnpl
knots and the slopes of the segments between them, ﬁincet at fall entirely within t 0Se bounds 1S at least

is piecewise constant. Writing the knist as (a, bi), we have Were the order statistics independent, one \{vould have to
choose an interval that gaw®F (yi) € (a,bi)) = an in order

Hw = — 3 (b1 —bi)lo biy1— D ®) to satisfy equation (9). However, since they are strongly
M Z I+ gai+1—a4' dependent, a much smaller value will suffice. We found that
using intervals such th&(F (y;) € (a;,b;)) = 0.999 produced
IV. ATIGHTERBOUND an effective probabilityn = 0.97 that all the order statistics are

The bound on the distribution provided by (2) allows foyv_ithi_n their intervals simqlte_meously. The natur_e of thqéabe
the same degree of uncertainty at all points. Intuitivety, flistributions of each statistic results in these interdzng
seems we should be able to bound the distribution more fightf€’y narrow near the edges, and very close tirom (2))
near the ends of the support than in the middle. For empiridf" the middle. Figure 6 shows this bound as the curved
support of this intuition, we generated 10000 experimerits w IN€S With the straight lines giving the bound given &y
100 samples each from a known distribution, and recorded
which of the order statistics were outside the bound (2) for V. DISCUSSION

o = 0.95. The histogram of this data in figure 5 clearly shows We have shown how distribution-free bounds on the cu-

that the bound prowded. by_ (2)_ is not as tight as it could g, 1ative distributions of unknown one-dimensional prabab
near the ends of th_e d|str|but|on_: One would expect thatj@ densities can be used to give sample-based probabilisti
bound that was as tight as possible everywhere would Mis$n4s on the entropies of distributions with known support
equally often at all points. As an alternative to providing the support of the distribnfi

To tighten the bound, we use the fact that for samplege can provide bounds on the mean log probability density
x_from a distributionF (x), the valuesF(x) are uniformly of the tails of a distribution, and still provide similar bws.
distributed on|0,1] [5]. Therefore the value oF (yi) has the \\e |eave this topic to future work.
same distribution as theth order statistic of a uniformly \ye haye provided a simple algorithm to compute this bound
Fhstnbuted sample, i.e., it IS bieta distributed with paﬁm exactly from samples taken from the unknown distribution. A
i andn—i+1 [1]. Its mean isgry, or Fa(yi). One could, in gyt of the algorithm is an explicit representatidn o
principle, determine intervalai, bi) such that Fm, the distribution that achieves the computed bound. The

P(Vi F(yi) € (&,hi)) =a (9) simple form ofFy makes it convenient for use in resampling

applications.
for a givena, and for which

Vi P(F(yi) ¢ (a&,bi)) =Q VI. REFERENCES
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