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Abstract

Object identification is the task of identifying specific objects belonging
to the same class such as cars. We often need to recognize an object that we
have only seen a few times. In fact, we often observe only one example of a
particular object before we need to recognize it again. Thuswe are interested
in building a system which can learn to extract distinctive markers from a
single example and which can then be used to identify the object in another
image as “same” or “different”.

Previous work by Ferencz et al. introduced the notion of hyper-features,
which are properties of an image patch that can be used to estimate the util-
ity of the patch in subsequent matching tasks. In this work, we show that
hyper-feature based models can be more efficiently estimated using discrim-
inative training techniques. In particular, we describe a new hyper-feature
model based upon logistic regression that shows improved performance over
previously published techniques. Our approach significantly outperforms
Bayesian face recognition that is considered as a standard benchmark for
face recognition.

1 Introduction

Distinguishing among similar objects within a class is moreeffective if we use expertise
about the class. To build the best possible classifiers, we should use features that are
repeatable and salient. In object identification, the features should be object specific and
be able to discriminate between a particular object and similar objects of the same class.
For example, door handles, headlights and roof tops might bedistinctive markers for
identifying cars. The complexity of determining these detailed features is increased by the
general variability of different images of the same car. This “within-instance” variability
is due to viewing angles, lighting and other factors.

An additional constraint for the object identification taskis that we often need to rec-
ognize an object that we have seen only a few times. For humans, a single example is
usually sufficient for finding distinctive features of an object given its class. For example,
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if we are looking at a human face, we often notice the shape of the nose and lips, the
color of the eyes, the hairdo, etc. We expect some of these features to provide interest-
ing patches which might be useful for distingushing a particular face. The set of useful
patches can be different for different faces, e.g., a cleft chin for John Travolta and a mole
near the lips for Cindy Crawford. Also, we expect to see thesefeatures at certain approx-
imate locations within the face. We might have accumulated this knowledge from various
human faces that we have seen before. This knowledge can be encoded as a function of
features (position, appearance, etc.) of image patches that determines whether that patch
would be useful or not for identifying a particular object. It is these features (representa-
tion of knowledge) that tell us about the likely utility of animage patch that Ferencz et al.
call hyper-features[5].

Ferencz et al. [5] demonstrated the efficacy of the hyper-feature models for object
identification. Their system was shown to outperform all other existing algorithms that
they compared their results with, on this class of problems.However, they optimize the
decision criterion indirectly by modeling the conditionaldistributions independently and
not optimizing the log-likelihood ratio that is used for making a decision about match or
mismatch. We propose a discriminative approach that optimizes the ratio of the posterior
probabilities directly. Our experiments show marked improvements in accuracy over the
existing generative models, for both the case in which entire images are used for classifi-
cation and also for the case when only a subset of the most informative image patches are
used for classification.

Most of the patch based identification methods [15, 9] model the distributions of
appearances of different patches. This provides a generative framework for the image
patches. Our approach is different from these techniques aswe are modeling the patch
differences conditioned on the patch appearances. Thus ourapproach is directly optimiz-
ing the criterion for identification. Moghaddam et al. [12] modeled the interpersonal and
intrapersonal variations as fixed multivariate normal distributions. Our system improves
on this approach by adapting these distributions accordingto individual faces. Cox et al.
[3] addressed this by using a different parameter values forindividual clusters of faces.
For a new face image, the parameter values of the nearest cluster are chosen. This cor-
responds to piecewise constant parameter values as a function of the features, which is
generalized by our system by providing a smooth interpolation over the entire feature
space.

Huang and Russell [6] did a Bayesian analysis of object identification in the context
of traffic surveillance. Their system required multiple images of a vehicle to build an ap-
pearance probability model for subsequent observations. As mentioned above, in a more
general setting, we observe only a single image to build a model for future inferences.
Learning from one example has also been explored in different contexts [11, 9]. In most
of these approaches, off-line training involves parameterestimation for a fixed model.
Our system, however, learns how to identify an arbitrary number of good features for
the given category and thus use different set of patches for each object in the category.
For face identification, the best performing PCA and LDA algorithms with face specific
preprocessing match a face as a single object [2]. To obtain the required level of accu-
racies, a large number of principal components are usually required to approximate the
underlying distribution of the face appearances. The hyper-features based approach was
shown to outperform these systems in [5]. Our model shows a further improvement in
performance.



Section 2 summarizes the hyper-feature model and differentcomponents of our sys-
tem. In Section 3, we describe the criteria for selecting a few patches from the image
for comparison to make the system real-time. Section 4 provides a detailed discussion of
advantages of discriminative learning of hyper-feature models.

2 The hyper-feature model

Here, we provide an outline of the hyper-feature model originally proposed in [5]. We
begin by describing the basic components of the system, followed by the generative model
used for the identification task. We then present a new discriminative model that addresses
the problem in a more direct way. In our discussion, we will refer to the query image as
the left (probe) image,IL, and the reference image in the database as the right (gallery)
image,IR.

We are using patch based features to represent an image. We encode each candi-
date patch of the left (probe) image,IL, as a vector,FL

j , of the directional derivatives in
eight fixed directions. The choice of representation is, however, not critical in the current
approach. Note that we sample patches at different scales and positions.

The images are assumed to be roughly registered. For every candidate patch (FL
j ), we

find the most similar patch (FR
j ) in a small neighborhood around the expected location in

the right (gallery) image,IR. We used j(= 1− xcorr(FL
j ,FR

j )) as the distance measure
between two image patches, wherexcorr gives the normalized cross-correlation between
the two image patches. We will refer to such a matched left andright patch pair(FL

j ,FR
j )

together with the derived distanced j as abi-patch Fj .
Hyper-features represent the characteristic properties of image patches that determine

if a patch will be useful for identifying a particular object. We choose a set of base hyper-
features as simple properties of the patch such as its location in the image, mean intensity
and edge energy. To increase the flexibility in the model, we introduce the monomials
(of degree 1, 2 and 3) of these base hyper-features into the set of possible hyper-features.
This gives a large number of hyper-features which might be correlated. Using least angle
regression (LARS) [4], we select a few(∼ 20) of these hyper-features as useful hyper-
features. This reduces the complexity of our model and avoids possible over-fitting.

We decide ifIL andIR are same using the rule

P(C = 1|IL, IR)

P(C = 0|IL, IR)
> 1, (1)

which is the optimal maximum a posteriori (MAP) classification criterion. Since we are
treating each image as a set ofm patches, the likelihoods and posteriors will be approx-
imated using the bi-patchesF1, ...,Fm asP(C|IL, IR) ≈ P(C|F1, ...,Fm) andP(IL, IR|C) ≈
P(F1, ...,Fm|C), whereC is the match-mismatch variable.

2.1 The generative model

In the generative approach to this problem described in previous work, separate distribu-
tions are estimated from training data for pairs of cars thatmatch and for pairs that do not
match. These distributions are optimized separately and only later combined to produce
decisions. We now describe the details of the generative model.



Using Bayes’ rule, equation 1 can also be written as

P(IL, IR|C = 1)P(C = 1)

P(IL, IR|C = 0)P(C = 0)
> 1 ⇒

P(IL, IR|C = 1)

P(IL, IR|C = 0)
> λ , (2)

whereλ = P(C=0)
P(C=1)

. Thus, by varying the values of this parameterλ for making a decision,
we are essentially changing the ratio of priors. This formulation is used as the decision
criterion for the generative model. Furthermore, we will assume a naı̈ve Bayes model in
which the bi-patches are independent of each other when conditioned on C:

P(IL, IR|C = 1)

P(IL, IR|C = 0)
≈

P(F1, ...,Fm|C = 1)

P(F1, ...,Fm|C = 0)
=

m

∏
j=1

P(Fj |C = 1)

P(Fj |C = 0)
. (3)

Let h j be the random variable representing the hyper-features of the left patch in the bi-
patchFj . Then we have

P(Fj |C) = P(d j ,h j |C) = P(d j |C,h j)P(h j |C) ∝ P(d j |C,h j) (4)

where Equation 4 is obtained by assuming the independence betweenh andC, which
holds almost exactly in practice.

Ferencz et al. [5] use gamma distributions to model theseP(d|C,h) i.e.,

P(d|C = 0;h) ∼ Γ(α0(h),θ0(h)) and P(d|C = 1;h) ∼ Γ(α1(h),θ1(h)). (5)

Here, a gamma distribution is parametrized by (α, θ ) and h are the hyper-features of
the given patch. These parameters,α0,α1,θ0,θ1, are modeled using a generalized linear
model [10] fit over the training values as a function of selected hyper-features,h.

2.2 A discriminative model

In the above-mentioned generative model, we are modelingP(d|C = 0,h) andP(d|C =
1,h) independent of each other. Thus we are using an indirect optimization for the deci-
sion criterion (Equation 2). In this section, we use the MAP-optimal criterion (Equation 1)
as the decision rule. We describe a discriminative model which estimatesP(C|d,h) and

thus directly optimizes the decision rule,P(C=1|d,h)
1−P(C=1|d,h)

> 1.
Logistic regression is a special generalized linear model suitable for modeling binary

responses. It allows one to predict a discrete outcome from aset of variables that may
be continuous, discrete, dichotomous, or a mix of any of these. In our model,C is the
binary response which depends on(d,h). Thus, we build the following parametric model
(sigmoid function):

P(C|d,h) =
1

1+e−Xβ , (6)

whereX is the vector representation of(d,h), also called thepredictor matrix, andβ is a
vector of coefficients that we learn through logistic regression

log

(

P(C|d,h)

1−P(C|d,h)

)

= Xβ + ε. (7)

Hereε is the error term having a binomial distribution. Note that we append a constant
term to X to include an offset in the linear fit.



However, the estimate of the posterior probability that we obtained by using the pre-
dictor matrix,X = (d,h), does not give us much flexibility to modelP(C|d,h). We are
interested in obtaining good estimates ofP(C|d,h0) when we observe a left patch having
the hyper-feature valuesh0. We want this curve to have sufficient flexibility to model the
underlying variability. Any logistic curve can be specifiedby exactly two parameters, viz.
location where the function takes value = 0.5 (sayα1) and its slope at that point (sayα2).
Ideally, we would like both of these parameters to be dependent onh0. Let us splitβ into
three parts corresponding to the offset and distance,d, and hyper-features,h, asβ0, βd

andβh respectively. Thus,Xβ = β0 +dβd +h0βh. It can be easily shown that

α1 = −
β0+h0βh

βd
, α2 =

βd

4
. (8)

Clearly,α2 does not depend onh0 whenX = (d,h). Hence, our estimates were not very
good with this model.

In the generative model discussed in the previous section, we were making the pa-
rameters of the gamma distributions as linear combinationsof the hyper-features. We
can obtain a similar flexibility by making bothα1 andα2 as linear combinations of the
hyper-features. This can be attained by constructing the predictor matrix asX = (d,h,dh).

In Figure 1, we show the estimates for the posterior probability obtained from actual
training samples (dots at the top and bottom) by logistic regression with the predictor
matrix containing[1 y y2 y3], wherey is the y-position of the center of the patch in the
image.

3 Patch selection

Since the patches can occur anywhere in the scale-space [7] of the image, the set of
possible patches is very large. To make this algorithm feasible for real-time applications,
we should be able to evaluate an image match quickly by using only a few patches that
were rated as most informative in a given image without sacrificing much accuracy. In
other words, we want to choose the patches which contain the most information about the
match-mismatch variableC. Let us define saliency of a patch as the amount of information
gained if the patch were to be matched.

It is important to note that our algorithm selects these patches before seeing a potential
match. Thus it selects these patches based only on their appearance and position in a
single image (the left image in this case). We do this by estimating the mutual information
betweenC andd as a function ofh.

Intuitively, if P(d|C = 0,h) and P(d|C = 1,h) are similar distributions, we do not
expect much useful information from a value ofd. Formally, this can be measured as the
mutual information between the patch dissimilarityd and the match-mismatch variableC
given the hyper-feature value,h, i.e.,I(d;C|h) as:

I(d;C|h) = H(d|h)−H(d|C,h), (9)

whereH(·) is Shannon entropy andP(d|h) can be estimated by adding the estimates for
P(d|C = 0,h) andP(d|C = 1,h).



Figure 1:Logistic regression based upon a single hyper-feature, they-position: The small
points in the lower plane and the upper plane represent the pairs of training images for
matched and mismatched cars respectively. Each point is plotted as a function of its
match/mismatch label (C), the distanced between the patches, and a hyper-featurey, the
y-position of the left patch of the patch pair. Notice that the points for matching cars
(lower plane) which are in the bottom half of the original images have theird values
clustered around zero. This is becaused values tend to be low for patches near the bottom
of the image when the cars match. On the other hand, for the same image position, the
points representing mismatched cars have a more uniform distribution of d values. The
goal of logistic regression is to approximate the original data points as well as possible
while constraining each “slice” of the surface parallel to thed axis to be a logistic function.
Furthermore, the parameters of the logistics at variousy coordinates should be a smooth
polynomial function ofy. It is easy to see that the logistic surface “dips” to represent the
low d values of the matching cars for patches in a particulary range.

Note that in a discriminative model, we do not have the estimates ofP(d|C,h) but
have the estimates ofP(C|d,h). We can still estimate the mutual information,I(d;C|h). 1

However, it is not clear which approach should be adopted forthe patch selection as nei-
ther of them is actually optimizing the mutual information estimation. In our experiments,
we use equation 9 for patch selection.

Using the estimates of mutual information, we can sort the image patches in non-
increasing order and choose the topm patches. Here, we are assuming that the patches

1

I(d;C|h) = ∑
C

∫

d

P(d|h)P(C|d,h) log
P(C|d,h)

P(C|h)
dd, (10)

whereP(d|h) is estimated using histogram based approaches or kernel density estimation.



40% 60% 80%
Bayesian ML 74.6± 7.83 60.5±8.38 54.8± 2.91

Bayesian MAP 74.8± 9.09 59.9± 8.59 54.3± 6.15
Generative 81.2± 6.35 63.4± 6.71 54.4± 6.37

Discriminative 93.0± 6.29 78.9± 8.15 60.1± 6.97

Table 1: Precision values at 40%, 60% and 80% recall for 10-fold cross-validation on the
faces data set containing 500 pairs each of “same” and “different” faces.

are independent, which is a serious limitation. However, ithas been shown by Ferencz
et al. [5] that modeling pairwise relationships between patches does not improve the re-
sults drastically. Thus, for our comparisons, ignoring thepairwise dependencies between
patches does not affect our conclusion.

4 Results and discussion

For the face recognition task, Ferencz et al. [5] has outperformed the standard techniques
like PCA+MahCosineandFilter +NormCor. PCA+MahCosineis the best curve pro-
duced by [2]. Through personal communications, Ferencz et al. asserted that their ap-
proach also beats local feature based techniques like SIFT [8], which is not designed for
problems like object identification within a class, by a widemargin. A more sophisti-
cated technique for face identification is Baysian face recognition [12], which was the
top performer in the FERET face recognition competition, beating the above techniques
described in [2]. Thus we chose to directly compare our technique with Ferencz et al. [5]
and Bayesian face recognition [12]. Although we have not performed an exhaustive com-
parison with all the published face identification algorithms, the advantage of our method
is clear from the wide margin with which we beat both of these leading techniques. Also
note that due to the patch selection component, we are able toachieve acceptable perfor-
mance using a small number of patches which makes it feasiblefor real-time applications.

As discussed in Section 3, there is no clear choice for a patchselection approach.
In our experiments, we separated the two stages, patch difference modeling and patch
selection, so that we can draw informative conclusions.

We compared the discriminative and generative approaches to modeling patch differ-
ences on a subset of the “Faces in the news” data set [1]. Thesefaces are automatically
extracted from news articles and aligned to a frontal pose. This is a difficult data set be-
cause of the large variations in lighting, background, facial expression and other factors.
The generative model was shown by Ferencz et al. [5] to perform better than the PCA and
LDA based algorithms with face specific preprocessing usingCSU’s evaluation system
[2]. Figure 2 shows a big improvement of our own discriminative model over the previ-
ous model. In Figure 2, we show that our approach beats another state of the art approach,
Bayesian face recognition [12], as well. Table 1 shows the comparison of precision val-
ues at different recall values for 10-fold cross validationon the faces data set. The gain is
significant for a range of recall values (though not for all),and the boost in performance
is clearly evident. Some pairs of face images that were correctly identified as “same” are
shown in Figure 2.



Figure 2: Results on face data set:[Left] These are some pairs of face images that are
correctly marked as “same”. There is a large variation in illumination, expression and
background. The variation in pose has been countered by aligning the face images to make
it approximately frontal.[Right] Both discriminative (blue) and generative (red) models
are trained for 500 pairs each of “same” and “different” faces. The test set contains 500
pairs of “same” and “different” faces of people which are notin the train set. The patches
are selected using the approach discussed in Section 3 in both the models. The boost in
performance is large over a wide range of recall values. Notethat our results outperform
Bayesian face recognition [12] that was the best performer on FERET data set.

To demonstrate that our approach performs well on differentobject categories, we also
ran some experiments on the car data set used by Ferencz et al.[5] in their experiments. In
Figure 3, we show a comparison between the discriminative and the generative approach
on the car data set.2

To directly compare the two patch difference modeling approaches, we compared the
discriminative and generative models using the same patch selection criterion (Section 3).
As shown in Figure 3, the discriminative method is uniformlybetter than the generative
model.

Note that even with the selection of a few (20) patches, we do not observe a signif-
icant drop in performance because the top patches contain almost all the discriminative
information. Another important observation is that even though the patches are selected
through an approach that uses the estimations of quantitiesthat are optimized in a gener-
ative fashion, the discriminative model beats the generative model in making the decision
for match or mismatch. This is due to the fact that patch selection and match evaluation
are decoupled from each other. Figure 4 show some identification results obtained by our
system on the car data set.

As is evident in our experiments, the discriminative model outperforms the generative
model for this task. This supports our hypothesis about the advantages of doing a direct
optimization of posterior probabilities.

Recently in computer vision and machine learning, there hasbeen a great deal of
analysis and discussion about the relative strengths and weaknesses of generative and

2These results are not directly comparable to the published results in [5] as the training and testing set are
different in the two cases.



Figure 3:Comparing performance of discriminative (blue) with generative (red) model on
car data set. Both models are trained for 178 different vehicles, each having one “same”
and five “different” training instances. The trained modelsare then tested on 170 other
vehicles. The test set has the same ratio of “same” to “different” pairs of car images.
[Left] Using all the patches: The blue curve clearly shows a better performance than the
red curve. The red curves overtakes the blue curve for a smallinterval, but the overall area
under the P-R curve is more for the blue curve.[Right] With patch selection: We use the
same patch selection method for the two models. The discriminative model is uniformly
better than the generative model.

discriminative models (see, for example, [14, 13]). Ulusoyand Bishop [14] enumerate
some of these strengths and weaknesses, and among other things conclude that “Other
things being equal, it would be expected that discriminative methods would have better
predictive performance since they are trained to predict the class label rather than the joint
distribution of input vectors and targets.”

It is interesting to note that Ng and Jordan [13] conclude that while discriminative
models may converge to better solutions for large enough data sets, they suggest that
generative models may perform better in some cases when datasets are small. This con-
clusion, however, is based upon an analysis of training discriminative classifiers with 0-1
loss, rather than with something like true logistic regression, in which a data point has a
value that depends upon how far it is from the decision boundary. It is not clear what the
conclusion should be for a discriminative model like our ownwhich uses classical logistic
regression, but it was our hypothesis that it would produce better results, which in fact it
has.
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