
Learning Hierarchical Representations for Face Verification

with Convolutional Deep Belief Networks

Gary B. Huang

University of Massachusetts

Amherst, MA

gbhuang@cs.umass.edu

Honglak Lee

University of Michigan

Ann Arbor, MI

honglak@eecs.umich.edu

Erik Learned-Miller

University of Massachusetts

Amherst, MA

elm@cs.umass.edu

Abstract

Most modern face recognition systems rely on a feature

representation given by a hand-crafted image descriptor,

such as Local Binary Patterns (LBP), and achieve improved

performance by combining several such representations. In

this paper, we propose deep learning as a natural source

for obtaining additional, complementary representations.

To learn features in high-resolution images, we make use

of convolutional deep belief networks. Moreover, to take

advantage of global structure in an object class, we de-

velop local convolutional restricted Boltzmann machines, a

novel convolutional learning model that exploits the global

structure by not assuming stationarity of features across

the image, while maintaining scalability and robustness to

small misalignments. We also present a novel application of

deep learning to descriptors other than pixel intensity val-

ues, such as LBP. In addition, we compare performance of

networks trained using unsupervised learning against net-

works with random filters, and empirically show that learn-

ing weights not only is necessary for obtaining good multi-

layer representations, but also provides robustness to the

choice of the network architecture parameters. Finally, we

show that a recognition system using only representations

obtained from deep learning can achieve comparable ac-

curacy with a system using a combination of hand-crafted

image descriptors. Moreover, by combining these represen-

tations, we achieve state-of-the-art results on a real-world

face verification database.

1. Introduction

There has been a significant amount of progress made

in the area of face recognition, with recent research focus-

ing on the face verification problem. In this set-up, pairs

of images are given at training time, along with a label in-

dicating whether the pair contains two images of the same

person (matched pair), or two images of two different per-

sons (mismatched pair). At test time, a new pair of im-

ages is presented, and the task is to assign the appropri-

ate matched/mismatched label. Unlike other face recogni-

tion problem formulations, it is not assumed that the person

identities in the training and test sets have any overlap, and

often the two sets are disjoint.

This set-up removes one of the fundamental assumptions

of the traditional experimental design, making it possible to

perform recognition on never-before-seen faces. Another

important assumption that has been relaxed recently is the

amount of control the experimenter has over the acquisition

of the images. In unconstrained face verification, the only

assumption made is that the face images were detected by a

standard face detector. In particular, images contain signif-

icant variations in nuisance factors such as complex back-

ground, lighting, pose, and occlusions. These factors lead to

large intra-class differences, making the unconstrained face

verification problem very difficult.

The current standard for benchmarking performance on

unconstrained face verification is the Labeled Faces in the

Wild (LFW) data set [11]. Since the release of the database,

classification accuracy on LFW has improved dramatically,

from initial methods getting less than 0.75 accuracy to cur-

rent state-of-the-art methods getting 0.84 to 0.86 accuracy.

The majority of existing methods for face verification

rely on feature representations given by hand-crafted image

descriptors, such as SIFT [18] and Local Binary Patterns

(LBP) [22]. Further performance increases are obtained by

combining several of these descriptors [38]. Rather than

spending time attempting to engineer new image descrip-

tors by hand, we instead propose obtaining new represen-

tations automatically through unsupervised feature learning

with deep network architectures [10, 1, 30, 27, 14].

These representations offer several advantages over

those obtained through hand-crafted descriptors: They can

capture higher-order statistics such as corners and contours,

and can be tuned to the statistics of the specific object

classes being considered (e.g., faces). Further, an end sys-

tem making use of deep learning features can be more read-

ily adapted to new domains where the hand-crafted descrip-

1



tors may not be appropriate.

Our primary contributions are as follows:

1. We develop local convolutional restricted Boltzmann

machines (RBMs), a novel extension of convolutional

RBMs that can adapt to the global structure in an ob-

ject class, which still scale to high-resolution images

and are robust to minor misalignments.

2. We present a novel application of deep learning to a

Local Binary Pattern representation rather than pixel

intensity representation, demonstrating the potential

to learn additional representations that capture higher-

order statistics of hand-crafted image descriptors.

3. We evaluate the role of learning in deep convolutional

architectures, and find that although random filters per-

form surprisingly well for single layer models (consis-

tent with prior work, such as [33, 12]), learning filters

is necessary to obtain useful multi-layer networks and

also provides robustness to the choice of the network

architecture parameters.

4. We demonstrate that, despite the amount of prior ef-

forts spent on engineering good image descriptors, by

using representations obtained from deep learning, we

are able to achieve comparable accuracy with state-

of-the-art methods using these hand-crafted descrip-

tors. Moreover, the information captured by the deep

learning representations is complementary to the hand-

crafted descriptors, and thus by combining the two sets

of representations, we are able to improve the state-of-

the-art face verification results on LFW.

2. Background

We review relevant work on unconstrained face verifica-

tion and on deep learning.

2.1. Unconstrained Face Verification

As mentioned in the introduction, the top performing

face recognition systems generally use some number of

hand-crafted image descriptors, such as LBP. Cao et al. [3]

form a pixel-level feature representation by circular sam-

pling similar to LBP, then quantize these feature vectors us-

ing random-projection trees. Classification is done using

multiple representations and comparing L2 distance.

Wolf et al. [38] use the approach of “One-Shot Simi-

larity” (OSS) measure and extensions such as “Two-Shot

Similarity” (TSS). The idea of OSS is to learn a discrimina-

tive model specific to a pair of test images by using a set of

background samples. A model is learned that separates one

image in the pair from the background images, and is then

applied to classify the other image in the pair, and this is

repeated for the other image. By combining OSS and TSS

using both LDA and SVM, over variants of LBP and SIFT

descriptors, this method has set the current state-of-the-art

results on LFW.

Nguyen and Bai [20] apply cosine similarity metric

learning (CSML) to face verification, combining pixel in-

tensity, LBP, and Gabor representations. As this approach

achieves high accuracy using a small number of representa-

tions compared with [38], we use a variant of this method

in our work, which we describe in Section 3. Guillau-

min et al. [8] also apply metric learning to face verification,

learning Mahalanobis metrics, particularly for situations in

which a large amount of training data is available (unre-

stricted setting of LFW).

Kumar et al. [13] take a different approach, using addi-

tional outside supervised training data to learn binary clas-

sifiers for attributes such as gender, goatee, and round face,

and binary classifiers that recognize a particular facial re-

gion of a particular person, referred to as simile classifiers.

Face images are represented as vectors over the outputs of

these different classifiers, and classification is performed

using an SVM with an RBF kernel.

Deep learning has also been previously applied to face

verification, and we describe this method in the next sec-

tion. Pinto and Cox [24] also make use of a multi-layer ar-

chitecture, where, rather than learning filters, they perform

high-throughput screening by employing high-end graphics

hardware and performing brute-force search for good fea-

ture representations.

Yin et al. [40] leverage pose information from Multi-

PIE, in the form of images of the same face taken from

a number of known poses, and apply this information to

handle intra-class variation in LFW. By attempting to cor-

rect for intra-personal variation, they achieve state-of-the-

art performance, for methods that make use of labeled train-

ing data external to LFW.

2.2. Deep Learning

As one of the most representative models in deep learn-

ing, the deep belief network (DBN) [10] is a genera-

tive graphical model consisting of a layer of visible units

and multiple layers of hidden units, where each layer en-

codes correlations in the units in the layer below. DBNs

and related unsupervised learning algorithms such as auto-

encoders [1] and sparse coding [23, 15] have been used

to learn higher-level feature representations from unlabeled

data, suitable for use in tasks such as classification. These

methods have been successfully applied to visual recogni-

tion tasks [29, 41, 16, 39, 28, 12].

Nair and Hinton [19] applied deep learning to object

recognition and face verification, using a modification to bi-

nomial units that they refer to as noisy rectified linear units.

To make learning computationally tractable, they subsam-

ple the face images to 32x32. In addition, their method was

not translation invariant and had to rely on manual align-

ment through hand-corrected eye coordinates as preprocess-

ing. In contrast, we take a convolutional learning approach,
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thus we are able to train the models directly on the full-sized

images without relying on careful manual alignment.

As other related work, Ranzato et al. [31] proposed a

deep generative model with applications to face recogni-

tion (e.g., classification), and Susskind et al. [36] applied

3-way RBMs for modeling pairs of face images. Compared

to these models, we consider more scalable algorithms that

can be applied to larger-sized images (150x150 pixels vs.

48x48 pixels). We also focus on the challenging task of

face verification.

Our work also studies three different strategies for train-

ing the deep architectures. The straightforward approach is

to train the model using images drawn from the same distri-

bution as that for the test images, which in our case would

be learning from faces in the training set. In many machine

learning problems, however, we are given only a limited

amount of labeled data, and this can cause an overfitting

problem. Thus, we also examine the strategy of self-taught

learning [26] (which is also related to semi-supervised

learning [21, 4]). Finally, we also consider using random

filters, motivated by the success of prior work [33, 12].

The idea of self-taught learning is to use a large amount

of unlabeled data that are not directly related to the labeled

data, and “transfer” low-level structures that can be shared

between unlabeled and labeled data. For instance, we can

imagine, for a binary image classification problem of classi-

fying cars versus motorcycles, using a large amount of un-

labeled images (that can be cheaply obtained through the

web) to learn low-level features (e.g., edges). For the case

of generic object categorization tasks, Raina et al. [26] and

Lee et al. [16] have shown successful applications of self-

taught learning, using sparse coding and deep belief net-

works to learn feature representations from natural images.

However, self-taught learning has not been used for face

verification tasks.

Unlike categorizing generic object images, face verifi-

cation focuses on a much more restricted subset of images

(i.e., faces), requiring a fine granularity of discrimination

solely between images within this restricted class. There-

fore, there are two interesting questions: first, whether fea-

tures learned from faces, which have been trained to be use-

ful for generating face images, are useful for discriminat-

ing between different faces; and second, whether features

obtained from self-taught learning capture useful structures

and representations that can be “transferred” from natural

images to the face verification problem.

Finally, recent work has shown that random filters can

give good performance in a convolutional architecture [33,

12]. This has led to the suggestion that one test different

architectures quickly using random filters, and then select

the top performing architecture to use with learned weights.

In this paper, we evaluate this strategy for face verification

tasks using a multiple-layer deep architecture.
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Figure 1. Schematic diagram of convolutional RBM with proba-

bilistic max-pooling. For illustration, we used pooling ratio C = 2

and number of filters K = 4. See text for details.

3. Methods

In this section, we describe the deep learning architec-

tures we apply to learn representations, as well as the face

verification algorithm.

3.1. Learning Hierarchical Representations

We first review the convolutional restricted Boltzmann

machine (CRBM) and convolutional deep belief network

(CDBN) [16], then present its extension, the local CRBM.

3.1.1 Convolutional RBM and DBN

The convolutional restricted Boltzmann machine is an ex-

tension of the restricted Boltzmann machine (RBM). The

RBM is a Markov random field with a hidden layer and a

visible layer (corresponding to input data, such as image

pixels), with bipartite connections between the layers (i.e.,

there are no connections among visible nodes or among hid-

den nodes). In CRBM, rather than fully connecting the hid-

den layer and visible layer, the weights between the hidden

units and the visible units are local (i.e., 10x10 pixels in-

stead of full image) and shared among all locations in the

hidden units. The CRBM captures the intuition that if a cer-

tain image feature (or pattern) is useful in some locations of

the image, then the same image feature can also be useful

in other locations.

In this paper, we utilize a convolutional RBM with

real-valued visible input nodes v and binary-valued hidden

nodes h. The visible input nodes can be viewed as intensity

values in the NV × NV pixel image, and the hidden nodes

are organized in 2-D configurations (i.e., v ∈ R
NV ×NV and

h ∈ {0, 1}NH×NH ). An illustration of CRBM can be found

in Figure 1.

The CRBM has three sets of parameters: (1) K convo-

lution filter weights between a hidden node and the visi-

ble nodes, where each filter covers NW × NW pixels (i.e.,

W k ∈ R
NW×NW , k = 1, ...,K); (2) hidden biases bk ∈ R

that are shared among hidden nodes; and (3) visible bias

c ∈ R that is shared among visible nodes.
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To make CRBMs more scalable, Lee et al. further de-

veloped “probabilistic max-pooling”, a technique for incor-

porating local translation invariance. Max-pooling refers

to operations where a local neighborhood (e.g., 2x2 grid)

of feature detection outputs is shrunk to a pooling node

by computing the maximum of the local neighbors. Max-

pooling makes the feature representation become more in-

variant to local translations in the input data, and it has been

shown to be useful in visual recognition problems [12, 2].

Probabilistic max-pooling enables the CRBM to incorpo-

rate max-pooling like behavior, while allowing probabilis-

tic inference (such as bottom-up and top-down inference). It

further enables increasingly more invariant representations

as we stack CRBMs [7].

We define the energy function of the probabilistic max-

pooling CRBM (with real-valued visible units) as follows:

P (v,h) =
1

Z
exp(−E(v,h))

E(v,h) = −
K
∑

k=1

NH
∑

i,j=1

NW
∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

+

NV
∑

i,j=1

1

2
v2ij −

K
∑

k=1

bk

NH
∑

i,j=1

hk
ij − c

NV
∑

i,j=1

vij

s.t.
∑

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α (1)

Here, Bα refers to a C × C block of locally neighboring

hidden units hk
i,j that are pooled to a pooling node pkα.

Under this energy function, the conditional probabilities

can be computed as follows:

P (vij = 1|h) = N ((
∑

k

W k ∗f hk)ij + c, 1) (2)

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))
(3)

where I(hk
ij) , bk + (W̃ k ∗v v)ij , N (·) is a normal dis-

tribution, W̃ refers to flipping the original filter W in both

upside-down and left-right directions, ∗v denotes valid con-

volution, and ∗f denotes full convolution.

At the same time, the pooling node pkα is a stochastic

random variable that is defined as pkα ,
∑

(i,j)∈Bα
hk
i,j , and

the marginal posterior can be written as a softmax function:

P (pkα = 1|v) =

∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))
(4)

When sampling from the posterior (given the visible nodes),

we can efficiently sample the hidden nodes in each block in

parallel from multinomial distributions, then set the pooling

node values accordingly.

The objective function is the log-likelihood of the train-

ing data. Although exact maximum likelihood training is in-

tractable, the contrastive divergence approximation allows

us to estimate an approximate gradient efficiently [9]. Con-

trastive divergence is not unbiased, but has low variance,

and has been successfully applied in optimizing many undi-

rected graphical models that have intractable partition func-

tions [32, 37, 10].

As in Lee et al., we also apply sparsity regularization.

Since the model is highly over-complete, it is necessary to

regularize the model to prevent it from learning trivial or

uninteresting feature representations (cf., see [23, 30] for

other methods for enforcing sparsity.) Specifically, we add

a sparsity penalty term to the log-likelihood objective to en-

courage each hidden unit group to have a mean activation

close to a small constant. We implemented this with the

following simple update rule (following each contrastive di-

vergence update):

∆bk ∝ p−
1

N2
H

∑

i,j

P (hk
ij = 1|v), (5)

where p is a target sparsity, and each image is treated as a

mini-batch. The learning rate for the sparsity updates was

chosen to make the hidden group’s average activation (over

entire training data) close to the target sparsity, while al-

lowing variations of activations depending on specific input

images. For more details of the overall training procedure,

see [17, 34].

After training a max-pooling CRBM, we can use it to

compute the posterior of the hidden (pooling) units given

the input data. These hidden (pooling) unit “activations”

can be used as input to further train the next layer CRBM.

By stacking the CRBMs, the algorithm can capture high-

level features, such as hierarchical object-part decomposi-

tions. In our experiments, we trained CDBNs with up to

two layers of CRBMs. After constructing a convolutional

deep belief network, we perform (approximate) inference

of the whole network in a feedforward (bottom-up) manner.

3.1.2 Local Convolutional RBM

The weight sharing scheme in a CRBM assumes that the

distribution over features is stationary in an image with

respect to location. However, for images belonging to a

specific object class, such as faces, this assumption is no

longer true. One strategy for removing this stationarity as-

sumption is to connect each hidden unit to only a local

receptive field in the visible image, as in the CRBM, but

remove the parameter tying between weights for different

hidden units [31]. However, even with only local connec-

tions, without any parameter tying, it is computationally in-

tractable to scale this model to high resolution images (e.g.,
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150x150 pixel images in the LFW dataset). Moreover, with-

out parameter tying, the model becomes sensitive to local

deformations and misalignments.

To maintain the advantages of the CRBM while exploit-

ing global structure, we divide the image into a number

of overlapping regions. The local convolutional restricted

Boltzmann machine extends the CRBM by using a separate

set of weights for each region. When trained on images

with some global structure, a local CRBM can learn a more

efficient representation than a CRBM since features for a

particular location are learned only if they are useful for

representing the corresponding region. Moreover, since fil-

ter weights are no longer shared globally, a local CRBM

may be able to avoid spurious activations of hidden units

outside the pre-specified local regions.

We formulate the local CRBM as follows. First, we di-

vide the image into L overlapping regions, with the l-th re-

gion defined as {R(l) : (r
(l)
min, r

(l)
max, c

(l)
min, c

(l)
max)}, where r

and c represent row or column index for the region in the

image. For convenience of presentation, we assume that

each region is square, with height and width equal to NR.

We denote by v
(l) the “submatrix” of the visible units that

correspond to the l-th region.

Let each region have K filters W (l),k of size NW ×NW .

The hidden units h
(l),k are binary random variables with

2D spatial structure (NH ×NH grid), where NH , NR −
NW + 1.

We can now define the energy function of the local con-

volutional RBM as follows:1

E(v,h) = −
L
∑

l=1

K
∑

k=1

(

v
(l) ∗ W̃ (l),k

)

⊙ h
(l),k (6)

+

NV
∑

i,j=1

1

2
(vij − c)2 +

L
∑

l=1

K
∑

k=1

NH
∑

r,s=1

b
(l)
k h

(l),k
r,s

where ⊙ is the element-wise product operator, c is a visible

bias, and b
(l)
k is a hidden bias. With v fixed, the conditional

probability of hidden units h(l) can be defined as:

P (h(l),k
r,s = 1|v(l)) = σ((v(l) ∗ W̃ (l),k)r,s + b

(l)
k ). (7)

where the σ(x) = 1
1+exp(−x) . We can also define the condi-

tional probability of the visible units given the hidden units.

P (v|h) = N

(

L
∑

l=1

I(l)

(

K
∑

k=1

W (l),k ∗f h
(l),k

)

+ c, I

)

. (8)

Here, h = {h(1), ...,h(L)}, and I(l)(Y ) is a projection op-

erator from RNR×NR to RNV ×NV where Y is a NR ×NR

1Note that we can also define probabilistic max-pooling for the local

CRBM. However, for the simplicity of presentation, we present a case

without probablistic max-pooling. Further, note that we use binary local

CRBM when we stack the local CRBM as the second layer.

image, used to accumulate the contribution of each local re-

gion to the visible layer. Specifically, I(l)(Y ) is defined as

[

I(l)(Yr′,c′)
]

r,c
=











Yr′,c′ if (r, c) =

(r′ + r
(l)
min − 1, c′ + c

(l)
min − 1)

0 otherwise.

With these conditional probabilities, we can train the local

CRBM following the similar procedure as for the CRBM

using contrastive divergence.

3.1.3 Learning Features from Existing Descriptors

Deep learning for images is usually performed by letting the

visible units be whitened pixel intensity values. We learn

additional novel representations by learning deep networks

on Local Binary Patterns, demonstrating the potential for

learning representations that capture higher-order statistics

of hand-crafted image descriptors. Using uniform LBPs (at

most two bitwise transitions), we have a 59 dimensional bi-

nary vector at each pixel location. We find a small increase

in performance by first forming histograms of 3x3 neigh-

bors (average pooling), and then learning a binary CRBM

on this representation.

3.2. Recognition Algorithm

Inspired by the success of Cosine Similarity Metric

Learning (CSML) [20], our face verification algorithm is

also based on a metric-learning approach. For the hand-

crafted model, we use the same features as was used with

CSML (pixel intensity, LBP, Gabor). We additionally fol-

low the same set-up by using PCA to reduce the dimension-

ality to 500, for all feature representations.

Rather than using CSML to learn a matrix ACSML,

we instead apply Information-Theoretic Metric Learning

(ITML) [5] to produce a Mahalanobix matrix M . We then

perform a Cholesky decomposition yielding a matrix A

such that ATA = M .

Letting x be the representation of an image after apply-

ing PCA, we obtain a feature vector y for an image by ap-

plying A and unit-normalizing, y = Ax
‖Ax‖ . We then form

a feature vector z for a pair of two images (with features

y and y′, respectively) using element-wise multiplication

z = y ⊙ y′. Finally, we apply a linear SVM to the feature

vectors z (for pairs of images) to perform face verification.

In practice, we find that using ITML improves perfor-

mance over CSML by several percentage points. Note that

if A is the identity matrix and the weights of the SVM are

1, then our system reduces to cosine similarity. Consistent

with previous work [3], we found that compression using

PCA followed by normalization gave the best performance.
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4. Experiments

For our experiments, we used the LFW-a2 face images

aligned using a commercial face alignment software, pro-

vided in [38]. We use three croppings of each image

(150x150, 125x75, 100x100), resizing to the same input

size for the visible layer, to capture information at differ-

ent scales. For self-taught learning, we used images from

the Kyoto natural images data set [6].3

To solve the SVM, we use the Shogun Toolbox [35].4

We set the SVM C parameter using the development view

of LFW. We optimized our CDBN code to use a GPU,5 al-

lowing us to test a single kernel system in several minutes

and learn weights in a DBN in less than an hour.

4.1. Setting Architecture, Model Hyperparameters

One of the challenges of using a deep learning architec-

ture is the number of architecture and model hyperparam-

eters that one must set. For each layer of CDBN, we must

decide the size of the filters, number of filters, max-pooling

region size, and sparsity of the hidden units.

Saxe et al. [33] found some correlation between perfor-

mance with random filters and learned filters for a given

architecture, and suggested using search over architectures

with random filters as a proxy for selecting a best architec-

ture to use with learned weights.

We evaluated the correlation between random weight

and learned weight performance for a one layer network

with 16 different architectures, varying the above architec-

ture hyperparameters. In this experiment, we used a single

cropping only and did not use metric learning. Figure 2

shows a scatter plot of random weight performance versus

learned weight performance. We find a somewhat high cor-

relation of 0.40. However, a more interesting finding is that

the range of accuracies for the learned filters is much more

concentrated around higher values compared with the ran-

dom filters. Thus, we hypothesize that, although networks

with random filters can approach the same accuracy as net-

works with learned filters given the right architecture, an

added benefit of learning is that the accuracy becomes more

robust to the specific architecture hyperparameters.

Moreover, we find that multi-layer networks with ran-

dom weights at each layer yield representations that lead

to near-chance recognition performance. Empirically, this

seems to indicate that, at least for the face verification task,

the non-linearities in a multi-layer network with random fil-

ters do not give good representations, and learning is nec-

essary. Given these findings, we set the hyperparameters

by performing a coarse search over the possible values, and

2http://www.openu.ac.il/home/hassner/data/lfwa/
3http://www.cnbc.cmu.edu/cplab/data_kyoto.html
4http://www.shogun-toolbox.org/
5We used code from Graham Taylor: http://www.cs.nyu.edu/

˜gwtaylor/code/GPUmat/.
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Figure 2. Random filter accuracy versus learned filter accuracy for

a one-layer network, using a single image cropping and no met-

ric learning (SVM only). The line indicates the diagonal y = x.

From this figure, it can be seen that although there is some corre-

lation between random filter accuracy and learned filter accuracy,

learning filters has the benefit of being robust to the choice of ar-

chitecture, increasing the accuracy significantly for architectures

where random filters give low accuracy.

Source Rep. Layer Model Accuracy

Kyoto pixels 1 CRBM 0.8527
Faces pixels 1 CRBM 0.8530
Kyoto pixels 2 CRBM 0.8522
Faces pixels 2 CRBM 0.8457
Faces pixels 2 local CRBM 0.8538
Kyoto LBP 1 CRBM 0.8520
Faces LBP 1 CRBM 0.8485

Kyoto pixels 1+2 0.8572
Faces pixels 1+2 0.8582
Kyoto both 1+2 0.8660
Faces both 1+2 0.8642
both both 1+2 0.8688

Table 1. Verification accuracy with different deep learning ar-

chitectures and training sources. The second column indicates

the representation for the visible units, and “pixels” stands for

whitened pixel intensity values. Top: Single representations. Bot-

tom: Combining representations with linear SVM.

learning and evaluating the model on the development view

of LFW.

4.2. Results

The top section of Table 1 gives the accuracy for indi-

vidual deep architectures. Since we expect the basic image

features learned by a single layer CRBM to be largely edge-

like features that are shared throughout the image, we apply

our local CRBM model only at the second layer. The second

layer CRBM and local CRBM have approximately the same

size hidden layer representation, but the local CRBM is able

to learn more filters since they are specific to each region,

and achieves a higher accuracy. Figure 3 shows a visualiza-

tion of the filters learned by the local CRBM. The bottom
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Figure 3. Visualization of sample filters from the second layer lo-

cal CRBM. Each row represents filters corresponding to each lo-

cal region, where the training images were divided into 9 half-

overlapping regions (i.e., the size of each region is half the image

size). We can see that the local CRBM capture characteristic facial

parts corresponding to the local regions.

section of Table 1 gives the accuracy when combining the

scores from multiple deep architectures using a linear SVM.

As the different layers are capturing complementary infor-

mation, we are able to achieve higher accuracy by fusing

these scores.

Table 2 gives the final accuracy of our system using the

deep learning representations, and the combined deep learn-

ing and hand-crafted image descriptor representations, in

comparison with other systems trained using the image-

restricted setting of LFW. Our system, using only deep

learning representations, is competitive with state-of-the-

art methods that rely on a combination of descriptions of

hand-crafted image descriptors, and is state-of-the-art rela-

tive to the existing deep learning method of [19], despite the

fact that [19] used manual annotations of eye coordinates to

align the faces.

By combining the representations from deep learning

and hand-crafted image descriptors, we obtain further im-

provements and achieve a new state-of-the-art accuracy.

Wolf et al. [38] combine hand-crafted image descriptors

such as LBP, Gabor, and SIFT, and additionally combine

each of these representations for six different similarity met-

rics. Results for a single similarity metric (OSS only) are

also given in Table 2. Our general methodology of learning

additional representations through deep learning could also

be applied to multiple similarity metrics rather than just a

single metric, potentially further improving our results.

Similarly, the recent paper of Yin et al. [40], who achieve

state-of-the-art accuracy using external training data con-

taining pose information to handle intra-personal variation,

relies on a fusion of four different hand-crafted image de-

scriptors, and could also potentially be improved by adding

additional deep learning representations.

Method µ̂± SE

V1-like with MKL [25] 0.7935± 0.0055
Linear rectified units [19] 0.8073± 0.0134
CSML [20] 0.8418± 0.0048
Learning-based descriptor [3] 0.8445± 0.0046
OSS, TSS, full [38] 0.8683± 0.0034
OSS only [38] 0.8207± 0.0041

Hand-crafted 0.8718± 0.0049
Deep Learning 0.8688± 0.0062
Combined 0.8777± 0.0062

Table 2. Comparison of our method with current state-of-the-art

methods on LFW. The right column gives mean classification ac-

curacy and standard error of the mean.

0 5 10 15 20 25
0

20

40

60

80

100

matched pairs

0 5 10 15 20 25
0

20

40

60

80

100

mismatched pairs

Figure 4. Histograms over the number of representations correctly

classifying each pair, for matched and mismatched pairs (cut off at

100 pairs).

4.3. Analysis

We can gain additional insight into the face verification

problem by looking at the number of representations whose

score correctly classifies each pair. Figure 4 shows a his-

togram over these values, separately for mismatched pairs

and matched pairs. Interestingly, the pairs that are correctly

classified by few or no representations is heavily skewed

toward matched pairs. Figure 5 gives some example pairs

that were incorrectly classified by all representations. On

our project webpage,6 we show all 50 such pairs that were

always incorrectly classified, out of which all but 3 were

matched pairs. These image pairs highlight a fundamental

difficulty with face verification, and verification within an

object class in general, namely the large amount of intra-

class variation due to several factors (e.g., pose).

6http://vis-www.cs.umass.edu/faceRecognition/
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Figure 5. Sample matched pairs from LFW that were incorrectly

classified by all representations.

5. Conclusion

We have demonstrated that we can improve upon meth-

ods that utilize a combination of representations from hand-

crafted image descriptors by adding additional represen-

tations from deep learning. We obtain novel representa-

tions through a new local convolutional RBM model and

by applying deep learning to LBP. By combining such deep

learning representations with hand-crafted descriptors, we

achieve new state-of-the-art accuracy on the LFW face ver-

ification database, and our methodology can be readily ap-

plied to other systems as well.
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