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ABSTRACT

This paper presents a new algorithm for the independent
components analysis (ICA) problem based on efficientspac-
ings estimatesof entropy. Like many previous methods,
we minimize a standard measure of the departure from in-
dependence, the estimated Kullback-Leibler divergence be-
tween a joint distribution and the product of its marginals.
To do this, we use a consistent and rapidly converging en-
tropy estimator due to Vasicek. The resulting algorithm is
simple, computationally efficient, intuitively appealing, and
outperforms other well known algorithms. In addition, the
estimator and the resulting algorithm exhibit excellent ro-
bustness to outliers. We present favorable comparisons to
Kernel ICA, FAST-ICA, JADE, and extended Infomax in
extensive simulations.

1. INTRODUCTION

We present a new independent components analysis (ICA)
algorithm. Empirical results indicate that it outperforms a
wide array of well known algorithms. Several principles its
development:

1. Since ICA is, by definition, about maximizing statis-
tical independence, we attempt to directly optimize a
measure of statistical independence, rather than a sur-
rogate for this measure.

2. We avoid explicit estimation of probability densities
as an intermediate step. Indeed, given the formulation
of the objective function, density estimation (even im-
plicitly) is entirely unnecessary.

3. Since our objective function involves one-dimensional
entropy estimation, we employ a consistent, rapidly
converging and computationally efficient estimator of
entropy which is robust to outliers. For this task, we
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turned to the statistics literature, where entropy esti-
mators have been studied extensively (c.f. [1]).

4. As the optimization landscape has potentially many
local minima, we eschew gradient descent methods.
The computational efficiency of our estimator allows
for a global search method. The properties of the ICA
problem allow extension of this technique to higher
dimensions in a tractable manner.

Attention to these principles led to the Robust, Accurate,
Direct ICA aLgorithm (RADICAL) presented here.

ICA as applied to instantaneous linear mixtures consid-
ers the generative model of random observations [2]

X = AS. (1)

HereX ∈ <C andS ∈ <D are random vectors, andA ∈
<C×D is a fixed but unknown mixing matrix. We will as-
sume that the mixing matrixA has full rank, the compo-
nents ofS are mutually independent, andC = D, or A is
square. The goal is to recover (in some sense) the sources
and perhaps the mixing matrix via a transformationW on
observations ofX, that is

Y = WX = WAS = BS. (2)

In this setting, it has been shown [3, 2] that one can recover
the original sources up to a scaling and permutation pro-
vided that at most one of the underlying sources is Gaussian
and the rest are non-Gaussian. See [4] for an extensive bib-
liography of the ICA problem.

Many approaches start the analysis of the problem by
considering the contrast function [2]

J(Y ) (3)

=
∫

p(y1, · · · , yD) log
p(y1, · · · , yD)

p(y1)p(y2)...p(yD)
dµ (4)

=
D∑

i=1

H(Yi)−H(Y1, · · · , YD), (5)

wheredµ = dy1dy2 · · · dyD andH(Y ) is the differential
entropy of the continuous multidimensional random vari-
ableY . Since (4) will be 0 if and only if all of the variables



aremutually independent, we take (4) as a direct measure of
mutual independence.

As a function ofX andW it is easily shown (c.f. [5])
that

J(Y ) =
D∑

i=1

H(Yi)−H(X1, . . . , XD)− log (|W |) ,

i.e., the change in the joint entropy under linear transfor-
mation is simply the logarithm of the Jacobian of the trans-
formation. We will assume theX ’s are pre-whitened, and
henceW will be restricted to rotation matrices (i.e.log (|W |) =
0) and the minimization ofJ(Y ) reduces to finding

W ∗ = arg min
W

H(Y1) + · · ·+ H(YD). (6)

To estimate this quantity, we adopt a different entropy
estimator, almost identical to one described by Vasicek [6]
and others1 in the statistics literature. These estimators,
which are discussed below, are known asspacings estimates.

2. SPACINGS ESTIMATES OF ENTROPY

Consider a one-dimensional random variableZ, and a ran-
dom sample ofZ denoted byZ1, Z2, ..., ZN . The order
statisticsof a random sample ofZ are simply the elements
of the sample rearranged in non-decreasing order:Z(1) ≤
Z(2) ≤ ... ≤ Z(N). A spacing of order m, or m-spacing, is
then defined to beZ(i+m) − Z(i), for 1 ≤ i < i + m ≤ N .
Finally, if m is a function ofN , one may define themN -
spacingasZ(i+mN ) − Z(i).

The mN−spacing estimator of entropy, originally due
to [6], can now be defined as

ĤN (Z1, ..., ZN ) =
1
N

N−mN∑
i=1

log
(

N

mN
(Z(i+mN ) − Z(i))

)
.

(7)
This estimator is nearly equivalent to the one used in RAD-
ICAL. To see where it comes from, we make the following
observation regarding order statistics. Forany random vari-
ableZ with impulse-free densityp(·) and continuous distri-
butionP (·), the following holds. Letp∗ be theN -way prod-
uct densityp∗(Z1, ..., ZN ) = p(Z1)p(Z2)...p(ZN ). Then

Ep∗ [P (Z(i+1))−P (Z(i))] =
1

N + 1
, ∀i, 1 ≤ i ≤ N − 1.

(8)
That is, the expected value of the probability mass of the in-
terval between two successive elements of a sample from a
random variable2 is just 1

N+1 . This surprisingly general fact
is a simple consequence of the uniformity of the random

1For a review of these estimators and other entropy estimators, see [1].
2The probability mass of the interval between two successive points is

equivalent to the integral of the density function between these two points.

variableP (Z), the random variable describing the “height”
on the cumulative curve of a random draw fromZ. P (Z) is
called theprobability integral transformof Z. The key in-
sight is that theintervalsbetween successive order statistics
tend to have about the same amount of probability mass.

Using this idea, one can develop a simple entropy esti-
mator. We start by approximating the probability density
p(z) by assigning equivalent masses to each interval be-
tween points and assuming a uniform distribution of this
mass across the interval3. DefiningZ(0) to be the infimum
of the support ofp(z) and definingZ(N+1) to be the supre-
mum of the support ofp(z), we have:

p̂(z;Z1, ..., ZN ) =
1

N+1

Z(i+1) − Z(i)
, (9)

for Z(i) ≤ z < Z(i+1). Then, we can write

H(Z)

= −
∫ ∞

−∞
p(z) log p(z)dz

(a)
≈ −

∫ ∞

−∞
p̂(z) log p̂(z)dz

= −
N∑

i=0

∫ Z(i+1)

Z(i)
p̂(z) log p̂(z)dz

= −
N∑

i=0

∫ Z(i+1)

Z(i)

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)
dz

= −
N∑

i=0

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)

∫ Z(i+1)

Z(i)
dz

= − 1
N + 1

N∑
i=0

log
1

N+1

Z(i+1) − Z(i)

(b)
≈ − 1

N − 1

N−1∑
i=1

log
1

N+1

Z(i+1) − Z(i)

=
1

N − 1

N−1∑
i=1

log
(
(N + 1)(Z(i+1) − Z(i))

)
≡ Ĥsimple(Z1, ..., ZN ).

The approximation(a) arises by approximating the true
densityp(z) by p̂(z;Z1, ..., ZN ). The approximation(b)
stems from the fact that we in general do not knowZ(0) and
Z(N+1), i.e. the true support of the unknown density. The
estimate (10) has both intuitive and theoretical appeal4, but
it has relatively high variance since while the expectation of

3We use the notion of a density estimate to aid in the intuition behinid
m−spacing estimates of entropy. However, as we stress below, density
estimationis nota necessary intermediate step in entropy estimation.

4The addition of a small constant renders this estimator weakly consis-
tent for bounded densities under certain tail conditions ([7]).



the interval probabilities (8) is 1
N+1 , their variance is high.

This problem can be mitigated, and asymptotically elimi-
nated completely, by consideringm−spacing estimates of
entropy, such as

Ĥm−spacing(Z1, ..., ZN ) ≡ (10)

m

N − 1

N−1
m −1∑
i=0

log
(

N + 1
m

(Z(m(i+1)+1) − Z(mi+1))
)

.

By letting

m →∞,
m

N
→ 0, (11)

this estimator also becomes consistent ([1]). In this work,
we typically setm =

√
N .

The intuition behind this estimator is that by considering
m-spacings with larger and larger values ofm, the variance
of the probability mass of these spacings, relative to their
expected value, gets smaller and smaller.

A modification of (10) in which them−spacings over-
lap:

ĤRADICAL(Z1, ..., ZN ) ≡ (12)

1
N −m

N−m∑
i=1

log
(

N + 1
m

(Z(i+m) − Z(i))
)

,

is used in RADICAL. This is asymptotically equivalent to
the estimator (7) of [6]. Weak and strong consistency have
been shown given (11) by various authors under a variety
of general conditions. For details of these results, see the
review paper [1]. Perhaps the most important property of
this estimator is that it is asymptotically efficient, as shown
in [8].

We note that Pham [9] defined an ICA contrast func-
tion as a sum of terms very similar to (10). However, by
choosingm = 1 as was done in that work, one no longer
obtains a consistent estimator of entropy, and the efficiency
and efficacy of (10) as an ICA contrast function appears to
be greatly reduced. In particular, much of the information
about whether or not the marginals are independent is ig-
nored in such an approach.

3. RADICAL IN TWO DIMENSIONS

Given that we have an entropy estimate (12) in hand, we
now discuss its application to optimizing (6), starting with
the two-dimensional ICA problem. Two issues which must
be dealt with are local minima and “false minima”. Local
minima are intrinsic to the optimization criterion (6) and
persist even in the case of infinite data, i.e. when the entropy
estimates are exact. False minima, on the other hand, are
minima in (6) due to poor estimates of the entropy based on
small sample sizes. We start by addressing false minima.

False minima can become quite severe when the sample
size is small and are a consequence of the fact that them-
spacings estimator makes no prior smoothness assumptions
(e.g. limited spatial frequency) regarding the underlying
densities. Consequently, for small sample sizes there ex-
ist rotations (instances ofW ) for which portions of the data
approximately align, producing an artificial spike in one of
the marginal distributions. This phenomenon is easily un-
derstood by considering the case in whichm, the number
of intervals combined in anm-spacing, is equal to 1. In
this case, for any value ofN there are many rotationsW (θ)
which will cause two points to align exactly, either vertically
or horizontally. This causes the1−spacing corresponding
to these two points to have width 0, which in turn gives this
interval an average logarithm of−∞. This results in an en-
tropy estimate of−∞ for this particular rotation of the data.
The entropy estimator has no evidence that there is not, in
fact, an impulse in the true marginal density which would le-
gitimately indicate a negatively infinite entropy, so it is not
a fundamental flaw with the estimator. Rather, it is a con-
sequence of allowing arbitrarily peaked implicit marginal
estimates. While this issue becomes less of a problem as
N andm grow, our empirical findings suggest that for the
densities considered in this paper, it must be addressed to
achieve good performance at least whileN ≤ 1000.

Consequently, we consider a smoothed version of the es-
timator. We attempt to remove such false minima by synthe-
sizingR replicates of each of the originalN sample points
with additive spherical Gaussian noise to make a surrogate
data setX ′. That is, each pointXj is replaced withR sam-
ples from the distributionN(Xj , σ2I), whereR andσ2 be-
come parameters of the algorithm. Then we use the entropy
estimator (12) on the expanded data setX ′.

Even if this initial smoothing effectively eliminates many
false minima, we must still address the issue of true local
minima of the cost function. Local minima arise, for exam-
ple, when one or more of the original source distributions
Si are multimodal. For 2-D source separation we take ad-
vantage of the fact thatW (θ) is a one-dimensional manifold
to do an exhaustive search overW for K values ofθ. Note
that we need only considerθ in the interval[0, π

2 ], since
any 90 degree rotation will result in equivalent independent
components. In our two-dimensional experiments, we set
K = 150. Importantly, it turns out that even in higher di-
mensions, our algorithm will remain linear inK, so it is
relatively inexpensive to do a finer grain search overθ if de-
sired. Complexity issues will be discussed in more detail
below.

In two dimensions, RADICAL is a very simple algo-
rithm, which is summarized in Figure 1. The algorithm
has four parameters. The first parameterm, determines the
number of intervals combined in anm−spacing. As stated
above, we chosem =

√
N for all of our experiments, which



Input: Data vectorsX1, ..., XN , assumed whitened.
Params.: m: Size of spacing. Usually equal to

√
N .

R: Number of replicated points per
original data point.

σ: Standard deviation for replicated points.
K: Number of angles at which to evaluate

cost function.
Procedure: 1. CreateX ′ by replicatingR points with

Gaussian noise for each original point.
2. For eachθ, rotate the data to this angle

and evaluate cost function.
3. OutputW corresponding to optimalθ.

Output: W, the demixing matrix.

Fig. 1. RADICAL in two dimensions.

guarantees the asymptotic consistency of our procedure, as
long as the original source densities are impulse free.

A second parameter is the number of pointsR used to
replace each original pointXj when creating the augmented
data set. We used a value ofR = 30 for all of our two-
dimensional experiments. We note again, however, that be-
cause the entropy estimator is consistent, for largeN , R can
be reduced to 1 (and the replication procedure eliminated).
The rate at whichR can be reduced as a function ofN is
dependent upon the densities of the specific componentsS.
The standard deviation of theR added points for each of
theN pointsXj is given byσ. Performance was relatively
robust to the choice of this parameter and we chose only
two different values ofσ for all of our experiments. For
N < 1000, we setσ = 0.35 and forN >= 1000, we set
σ = 0.175.

The only remaining parameter for RADICAL in two di-
mensions isK, the number of rotations at which to measure
the objective function. Since the error metric is approxi-
mately proportional to the difference in angle between the
estimatedθ and the true “unmixing”θ, it is easy to see that
asymptotically, a lower bound on the minimum expected er-
ror is approximately π

4K . However, this bound does not be-
come relevant untilN is large enough to give very accurate
entropy estimates.

In informal experiments, we tried values forK of 50,
100, 150, and250. There was no noticable improvement
in performance forK > 150, even forN = 4000 and the
higher dimensional tests. ForK = 150, the lower bound
on error is approximately0.005. Since the errors for the
experiments given here were much larger than this, there
was no advantage in further increasingK. In other words,
K need be no larger than is warranted by the sizeN of the
data set. Note, however, that since both the two-dimensional
and higher-dimensional versions of RADICAL are linear in
K, it is relatively inexpensive to increase the resolution of
the exhaustive search.

3.1. Algorithmic complexity

The complexity of RADICAL in two dimensions is a func-
tion of two main elements. First, each evaluation of the
entropy estimator requires a sort of|X| = N data points,
or when point replication is used|X ′| = RN ≡ N ′ data
points. This gives a complexity ofO(N log N), orO(N ′ log N ′)
for each evaluation of the cost function. WhenN is large
enough, point replication becomes unnecessary, so asymp-
totically each evaluation isO(N log N).

Secondly, we evaluate the cost functionK times. This
results in an apparent final complexity ofO(KN log N) for
RADICAL in two dimensions. We note, however, that large
savings can be obtained since resorting theN points after a
slight rotationdθ can be done more efficiently than sorting
the N points for the first time, since most points will be
in the correct relative positions. Under certain conditions,
this resortng can be done inO(N) time which gives a total
complexity ofO(N log N + KN). However, for the most
general scenario, we have yet to prove a complexity better
thanO(KN log N).

3.2. Experiments in two dimensions

To test the algorithm experimentally, we performed a large
set of experiments, largely drawn from the comprehensive
tests developed by Bach and Jordan [10]. Our tests included
comparisons with FastICA [11], the JADE algorithm [12],
the extended Infomax algorithm [13], and KernelICA using
the generalized variance [10].

For 18 different one-dimensional densities,5 the follow-
ing experiments were performed. Using a densityq(·), N
points were drawn iid from the product distributionq(·)q(·).
The points were then subjected to a random rotation matrix
A to produce the inputX for the algorithm6. We then mea-
sured the “difference” between the true matrixA and the
W returned by the algorithm, according to the well-known
criterion (Amari error), due to Amari et al. [15].

Table 1 shows the mean results for each source density
on each row, withN = 250, the number of input points,
and 100 replications of each experiment. The best perform-
ing algorithm on each row is shown in bold face. Note that
RADICAL performs best in 10 of 18 experiments, substan-
tially outperforming the second best in many cases. The
mean performance in these experiments is shown in the row
labeledmean, where RADICAL has lower error than all
other algorithms tested. The final row of the table repre-
sents experiments in which two (generally different) source
densities were chosen randomly from the set of 18 densities

5These densities and additional details of the experiments are described
in [14].

6Alternatively, we could have applied a random non-singular matrix to
the data, and then whitened the data, keeping track of the whitening matrix.
For the size ofN in this experiment, these two methods are essentially
equivalent.



pdfs F-ica Jade Imax KGV RADICAL
a 8.9 7.5 56.3 5.7 5.6
b 10.2 9.3 61.8 6.2 7.0
c 4.4 3.1 18.4 4.3 2.4
d 11.8 10.0 61.1 11.6 12.6
e 8.1 7.4 67.7 3.1 1.7
f 7.9 5.5 12.4 3.3 2.0
g 3.9 2.9 18.1 2.9 1.4
h 11.1 8.2 27.2 8.4 12.1
i 18.5 16.7 37.6 23.2 27.0
j 12.2 12.8 50.5 3.0 1.7
k 14.1 10.3 30.2 5.2 5.5
l 22.6 16.4 39.2 8.7 11.7
m 8.2 6.9 29.5 12.3 1.9
n 11.4 9.7 32.1 9.7 3.9
o 8.7 6.8 23.7 9.4 8.6
p 9.9 6.7 29.1 6.0 2.6
q 35.8 32.0 39.1 9.4 5.3
r 13.0 9.5 27.7 7.2 8.9

mean 12.3 10.1 36.8 7.8 6.8
rand 10.7 8.5 29.6 6.0 5.8

Table 1. The Amari errors (multiplied by 100) for two-
component ICA with 250 samples. For each density (see
[10]), averages over 100 replicates are presented. For each
distribution, the lowest error rate is shown in bold face. The
overall mean is calculated in the row labeledmean. The
rand row presents the average over 1000 replications when
two (generally different) pdfs were chosen uniformly at ran-
dom among the 18 possible pdfs.

to produce the product distribution from which points were
sampled. 1000 replications were performed using these ran-
domly chosen distributions. For these experiments, RADI-
CAL has a slight edge over Kernel-ICA, but they both sig-
nificantly outperform the other methods.

Figure 2 shows results for our outlier experiments. These
experiments were again replications of the experiments per-
formed by [10]. It can be seen that RADICAL is uniformly
more robust to outliers than all other methods in these ex-
periments, for every number of outliers added.

4. RADICAL IN D DIMENSIONS

We now discuss the extension of RADICAL to problems
with dimensionD greater than two. To find theD−dimensional
rotation matrixW ∗ that optimizes (6) inD dimensions, we
use Jacobi methods such as those used to solve symmetric
eigenvalue problems, and as applied to the ICA problem in
[2]. The basic idea is to rotate the augmented dataX ′ two
dimensions at a time usingJacobi rotations(c.f. [16]). Since
a Jacobi rotationJ(p, q, θ) in the(p, q) plane leaves all com-

0 5 10 15 20
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Fastica (tanh)
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Fastica (gauss)
KernelICA−kgv
RADICAL

Fig. 2. Robustness to outliers. The abcissa displays the
number of outliers and the ordinate shows the Amari error.

ponents of anD-dimensional data pointXj unchanged ex-
cept for thepth andqth components, optimizing our objec-
tive function (6) reduces to a two-dimensional ICA problem
for each distinct Jacobi rotation.

Algorithmically, we initializeY to our augmented data
setX ′, and our rotation matrixW to the identity matrix.
After optimizing our objective function for a pair of dimen-
sions(p, q), we updateY :

Ynew = J(p, q, θ∗)Y, (13)

keeping track of our cumulative rotation matrix:

Wnew = J(p, q, θ∗)W. (14)

Note that since each Jacobi rotation affects only two compo-
nents ofY , this is anO(22N ′) = O(N ′) operation. Thus,
full scaleD−dimensional rotations need never be done. There
areD(D− 1)/2 distinct Jacobi rotations (parameterized by
θ), and performing a set of these is known as asweep.

Empirically, performing multiple sweeps improves our
estimate ofW ∗ for some number of iterations, and after
this point, the error may increase or decrease sporadically
near its smallest value. The number of sweepsS becomes
an additional parameter for multi-dimensional RADICAL.
We found that with in dimension as high as sixteen, there
was no additional improvement afterS = 8 sweeps in our
experiments. In practice, rather than setting a fixed value
of this parameter, we iterated sweeps until the change inW
was below some small tolerance.

To evaluate the complexity of RADICAL inD dimen-
sions, we first note that there areO(D2) Jacobi rotations,
rather than simply 1 rotation as there was in two dimensions.
Second, the algorithm is linear in the number of sweepsS.
Hence, the final complexity is at worstO(SD2KN log N).



dim N #repl Fast Jade Imax Kgv Rad
2 250 1000 11 9 30 5 6

1000 1000 5 4 7 2 2
4 1000 100 18 13 25 11 6

4000 100 8 7 11 4 3
8 2000 50 26 22 123 20 11

4000 50 18 16 41 8 8
16 4000 25 42 38 130 19 15

Table 2. Amari errors for experiments in higher dimension.
The table shows experiments for dimensions two through
16. The number of points used for each experiment is shown
in the second column and the number of replications per-
formed to obtain the mean values at right is given in the third
column. Note that RADICAL performed best or second best
in every experiment, performing better than all other algo-
rithms in four of seven experiments.

We note again that there are substantial opportunities for
savings in computational cost over the most naive imple-
mentation. These will be discussed in future work.

It is also interesting to note that while Jacobi rotations
have been applied in previous work, by combining them
with a one-dimensional exhaustive search technique, we es-
cape many of the local minima in which a traditional Jacobi
algorithm would be trapped. For this benefit we pay only the
price of replacing a gradient method of an unknown number
of steps by the constant factorK.

Table 2 presents results of experiments for multiple di-
mensions. In each experiment for dimensionD, D (gener-
ally) different densities were selected at random from the set
of 18 densities discussed above. Samples from the resulting
product distributions were again randomly rotated, and the
task was to recover the independent components. Hence,
our empirical results show that RADICAL exhibits excel-
lent performance in two dimensions, in higher-dimensional
problems, and also has excellent robustness to outliers.
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