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Abstract— A novel probabilistic upper bound on the However, given a sample from an unknown distribu-
entropy of an unknown one-dimensional distribution, given tion, we can say that it isinlikely to have been drawn
the support of the distribution and a sample from that from a distribution with entropy greater than some value.
d'St”b‘]f“c;]”' IS iresentzq. Nt? knowledge pe;(/jong the sup- | this paper, we formalize this notion and give a specific,
port of the unknown distribution is required. Previous . opapijictic upper bound for the entropy of an unknown
distribution-free bounds on the cumulative distribution . . C

distribution using both the support of the distribution

function of a random variable given a sample of that T
variable are used to construct the bound. A simple, fast, and a sample of this distribution. To our knowledge,

and intuitive a|gorithm for Computing the entropy bound th|S iS the firSt non'triViaI uppel’ bound on diffel’en'[ia|

from a sample is provided. entropy which incorporates information from a sample

| INTRODUCTION apd can be a_\pplied to any one-dimensional probability
' distribution with a density.

The differential entropy of a distribution [9] is a quan- | this work, we restrict our analysis of distributions
tity employed ubiquitously in communications, statisticg= \yhose entropy we wish to bound to those with den-
learning, physics, and many other fields. Xebe a one- gjiies and finite support. For some distributions without
dimensional random variable with absolutely continuoygsnsities, such as discrete distributions and mixtures of
distribution F(x) and densityf(x). The differential en- apsolutely continuous distributions with finite support

tropy of X is defined to be and discrete distributions, the definition of differential
_ [ entropy can be extended to beo. Since our algorithm,
h(X) = /700 f()logf(x) dx (1) presented below, returns an extended real number, it also

Since the entropy ok depends only upon its density (iffeturns a valid upper bound for these latter types of
it exists), we also writéh(f) = h(X). distributions. We do not address the class of singular
It is well known [3] that the entropy of a distributiondistributions (e.g. Cantor distributions), whose entespi

with support[x_,xg] is at most logxz — x_), which is are undefined.

the entropy of the distribution that is uniform over the

support. Given a sample of size from an unknown Il. THE BOUND

distribution with this support, we cannot rule out with . .
certainty the possibility tF;]F;.t this sample was drawn from Let Xa,X,..., X be i.i.d. real-valued random variables

the uniform distribution over this interval. Thus, WeWlth distribution function F(x) = Prob{X, < x} and

. I density f (x).! Denote the standard empirical distribution
cannot hope to improve a deterministic upper bound o i
. : lunction by
the entropy over such an interval when nothing more is 10
known about the distribution. FoxX) = =5 |y
n( ) ni; {Xi<x}»

This work has been submitted to the IEEE for possible publication.

Copyright may be transfered without notice, after which this version e will assume for the remainder of the paper that 3, as this
may no longer be accessible. will simplify certain analyses.



the empiricaln-sample cumulativel,(x), and the true
distribution:

09
0.8

P(SUplF(x) —Fa(X)| >€) <26 ™ =1—a. (3)

0.7

Thus, with probabilityat leasta, the true cumulative
does not differ from the empirical cumulative by more
than €. This is a distribution-free bound. That is, it
holds for any one-dimensional probability distribution.
Empirical cumulative For background on such bounds and their uses, see the
4 text by Devroye et al. [4].

Upper bound
0.6

05F

7 Lower bound | For a given empirical distributior,, consider the
f j~ Knotpont family ¢ (F,) of cumulative distribution function&(x)
02?5 1 that satisfy the condition
% 05 1 15 2 25 3 as 4 SUp‘G(X) — Fn(X)‘ <e. (4)
X

Fig. 1.  This figure shows the maximum entropy cumulativé€t h* be the supremum of the entropies of these
distribution Ry which fits the constraints of the Massart inequalitfunctions, i.e.
for the given empirical cumulative distribution and some confidence

level o. Notice that the cumulative is piecewise linear, implying a h* = sup h(G(x)).

piecewise constant density function. With probability at lemsthe Gec(Fn)

true cumulative distributiofr has entropy less than or equal to this . s
maximum entropy distribution. We present an algorithm that constructs a distribution

Fv(X) whose entropy attains this supremum. Further-
more, we show that this distribution is unique. In other

wherel g, is the indicator function which takes a valugvords, the algorithm constructs the unique distribution
of 1 whenE is true, and 0 otherwise. with maximum entropy that satisfies condition (4). This

Consider a sample of size and the order statistiés establishes a probabilistic upper bound on the entropy
Z, through Z, of that sample. We assume that thef the distribution from which the original sample was
distribution has finite support and that we know thigrawn.
support. For ease of exposition, we label the left supportFigure 1 illustrates some of the basic ideas of the
Zo and the right suppoi,,1 making the support valuespaper. The central piecewise constant curve is a typical
act like additional order statistics of the sample. Bi@mpirical cdf. The outer curves are confidence bounds
this is done merely for notational convenience and dof¥ the true cumulative distribution based upon{3)he
not imply in any way that these are real samples of tipgecewise linear curvey between the bounds shows the
random variable. maximum entropy distribution within the bounds. Note

It will also be useful to refer to the (extended) entropthat this maximum entropy distribution follows the same
of a distribution directly as a function of its cdf. Forpath that would be followed by a string which has been
distributions with densities, discrete distributions,darthreaded through the “tube” provided by the upper and
mixture distributions with cd6, we defined the extendedlower bounding curves and then pulled tight. For this
entropy, as a function oB, to be reason, we call the algorithm which generates this curve
the string-tightening algorithm
h($%) whenG has a density

2
—o0 otherwise (2) Ill. APPROACH

We proceed as follows:

1) Consider again a sample of sipefrom an un-
known one-dimensional distribution. We handle

We start with a bound due to Dvoretzky, Kiefer, and
Wolfowitz [5], and whose constant was determined by
Massart [7], on the supremum of the distance between

SMore precisely, the outer curves are slight modifications of the
2The order statisticZy,Zo,...,Zn, of a sampleXy,Xo,..., X, are envelope suggested by (3) which restrict the curve to obey the bound
simply the values in the sample arranged in non-decreasing orderdto be piecewise linear and continuous between sample points. We
Hence,Z; is the minimum sample value, the next largest value, show in Lemma 3 that any entropy maximizing cdf must be piecewise
and so on. linear and continuous.



separately the cases in which there are no duplic: F.(x)
A

sample values and in which there are duplicate Vi
We address the latter case in Appendix B. Whe \fﬂ
there are no duplicate sample values, we shc 4
that any entropy-maximizing distribution must b Fn(zi)=,iT — I-—O
continuous. °~ °
2) For a given sample, at each sample point, we defi ! iy
sets of pairs of points callegegs between which % % % X
a continuous cdf must pass to obey the bound. Z i1 Ziwo

3) Now consider a distributio®(x) with continuous
cdf that is a candidate for the maximum entropy
distribution. We refer to the valu&3(z;) of the cdf Fig. 2. This figure shows, in detail, a portion of an empirical
evaluated at the sampl&sas thecritical ordinates distribution and the plus-or-minus bounds of (4). The empirical

. . . cumulative distribution is shown by the thicker horizontal lines. The
of G(X)' Likewise, we refer to the ordered PallSeft end of each segment of the distribution is shown as a closed
(Zi,G(Z)) as thecritical points of G(x). We show circle, and the right end with an open circle, to denote the semi-open
that among cdfs with a particular set of criticainterval spanned by each segment. The upper and lower bounds are
hahown by the thinner horizontal lines. Note in particular the points

points, the piecewise linear cdf maximizes t %ih,li.,u”l, andli; at the order statistic locatiors andZ; ;. These

entropy. points bracket the function (according to the bound) at the sample
4) Thus, to find a globally entropy-maximizing cdfyalues. Furthermore, since any entropy maximizing distribution must

it is enough to consider piecewise linear function§& continuous (Lemma 2), at the sample valje; an entropy
. . . . . maximizing distribution must also have an ordinate value at or below
since for any cdf that is not piecewise linea

X 0 . - he pointvi.1. We refer to the lower bracketing pointsand the
there exists another admissible one that is pieagter upper bracketing pointg as pegs These pegs are the only

wise linear and has larger differential entropy. Thigcations at which the maximum entropy cumulative distribution can
piecewise linear cdfs can be parameterized ytentially bend (Lemma 5).

their critical ordinates. Let the vector of critical
ordinates be represented = [0:6,...8,]". We

: . .~ We conclude that with probabilityr, the true distribution
show that the entropy of these piecewise line

fes within thise of the empirical distribution at alk.

c_dfs_ Is a strictly convex f_unction 0® and th_at The upper bound on the ordinate at sample pdint
finding the © that maximizes the entropy is R given by

convex optimization problem over a closed convex
set. Hence it has a uniqgue maximum.

5) We then show that the entropy maximizing CdeimiIarIy,
in addition to being piecewise linear, must bend .
upward only at upper pegs and downward only at li = max(l —¢,0).
lower pegs. o n _ _

6) Since only a finite number of cdfs satisfy this AS shown in Figure 2, we also define tipeints or
condition, it suffices to consider each of these cafrdered pairs corresponding to these bounds as
didates for the maximum entropy distribution. We u = (Z,u)
provide a simple graph algorithm that efficiently
finds the maximum entropy distribution from this2nd

.
U = mln(ﬁ +¢,1).

the lower bound is given by

finite set, and show how to calculate the entropy li = (Z, i),
of the resulting distribution. for 1 <i < n. Additionally, we definalg =1g=0, Up;1 =
Now we provide details. lny1=1,Up=lop=(Zo,0) andup.1 = ln11 = (Zn:1,1).
A. Sample point bounds B. Existence of certain cdfs
For a desired confidence leval we can compute a Lemma 1:For a sample with no repeated values and
corresponding from (3) that meets that level: a given confidence, there exists at least one cdf which
satisfies condition (4) and that is continuous and is
£ _|nlfT°‘ (5) linear between successive order statistics (and hence is
N 2n piecewise linear).



Proof: Note that for a confidence level, € is maximizing cdf must pass between each pair of pegs (or
always larger than the step size of the cdf, since pass through one of the pegs). It follows immediately that

. unless each critical poiniz;,G(z;)) of a cdf G(x) falls

o

e > _InT between (or on) the pegg andl;, such a cdf cannot
- 2n be the maximum we are seeking. We refer to critical
n2 1 points which fall between (or on) pegs asimissible
= o % critical pointsand to their ordinates aglmissible critical
1 ordinates
> o vn> 3.

Given this relationship betweemand?, we note that the _ o )
cdf which is linear between order statistics and whids Piecewise linearity of cdfs
connectd; to lj.; satisfies condition (4) at every point.

(See Figure 2.) m Lemma 3:Among the cdfs with a particular set of
o admissible critical ordinates, the one which is piecewise
C. Continuity of cdfs linear both satisfies condition (4) and maximizes the

Lemma 2:For samples without repeated valuesntropy.
among cdfs that meet condition (4), a cdf with disconti-  proof: Assuming all are admissible, let the critical
nuities cannot maximize entropy. ordinates of a cdf aZ, be denoted;. Then the set of
Proof: The differential entropy of any cdf with ¢yitical ordinates for a cdf can be encoded as a parameter
discontinuities is—. Since by Lemma 1 there always,ector © — {60,61,...,6n.1}, Where 8, and 6, are 0
exists a cdf without discontinuities that satisfies (4), ¢hegng 1 by definition, but the othe; can be chosen
is always at least one cdf that will have entropy greatg§ maximize entropy. Now consider the set of possible

than any non-continuous cdf. . - B cdfs with a particular set of critical ordinaté® and a
Hence, in searching for a cdf with maximimum engorresponding set of critical points.

tropy, it is enough to consider only continuous cdfs. Because > % and thev; upper bound cdfs with admis-

D. Pegs sible critical ordinates at the sample points, condition (4
The pointsu; and |; defined above represent thédmits any cdf that is linear between successive critical

straightforward application of (3) at the sample point®0ints (see Figure 2).

Using Lemma 2 we can tighten these bounds for theWe next show for any set of critical ordinat€s the
entropy maximizing distribution, if it exists. In partiar] cdf with those critical ordinates that maximizes entropy
referring again to Figure 2, at a sample pdint;, while is piecewise linear between the corresponding critical
condition (4) allows the cdf to pass through a paint points.

(Zi1+1,b), whereu; < b < ui;4, such a curve cannot be an Note that the entropy function for a c@(x) is sepa-
entropy maximizing cdf since it will have a discontinuityrable into integrals over the interval of interézt, Z;, 1]
at Z,,. This discontinuity would be unavoidable for agnd the remainder of the real ling&;, Z; 4]
cdf containinga, since to the left of the samplg. ; the

curve is upper bounded hy. Thus,at a sample point

Z;, any continuous cdf is upper bounded by the value h(G)= — /Zwlg(x) logg(x) dx
R ;
Vi = mm(ﬁ +te— )s — /[Z § ]g(x) logg(x) dx.

for 1 <i <n. As before we defingy =0 andv, ;=1

for notational convenience. We also define goents
Because of this separability, conditioned on specific

Vi = (Zi,vh) values for critical ordinate®; and 6,1, the cdf must
for 0<i <n+1. Figure 2 shows the location of, ;.  Maximize each of the terms above separately.
Together, we refer to the pointg andl; at the sample  Focussing on the first term, letting be the set of
points aspegs and they will play a key role. As we all continuous monotonic non-decreasing functions over

have just shown, at each sample point, any entrof,Z 1], and withg(x) = 2% we have




G. “String” bends only at pegs

[ [Za Let Ry be the unique entropy maximizing distribution.
@Eagx / x)logg(x dx] (6) As shown aboveF, should be piecewise linear, with
any “bends”, or changes in slope, occurring only at
= g‘eagx / x) [logg(x) — Iog(C)]dx} (7)  the critical points. Intuitively, using the string-tiginieg
Z analogy, as the string is tightened, one might guess that
= max / Iogdx] (8) that these slope changes can occur only at the pegs,
eeo L which we prove here.
— max / g)dx] (9) Lemma 5:An increase (decrease) in slopeff can
Geg | occur only at the upper (lower) peg of a sample.

. Proof: By contradiction. Define the pointsb, and

The last expressmn is just the entropy of the dig-to be (Z ;,a), (Z,b), and(Z.1,c) respectively, with
tribution d(x) = 9, which for the right choice oC a<b<c and 1<i < n. Suppose that there are two
is a properly normalized probability distribution oveconnected segments Bfj, ab andbc. Now suppose that
[Zi,Zi,1]. It is well-known [3] thatd(x) must be uniform b < v; (it is below the upper peg) and the pomts below
(excluding a set of measure 0) to maximize entropy ovete line segmerdc. That is, the slope of the cdf increases
a finite interval. This in turn, implies tha(x) must be atb.
uniform betweenZ; and Z.; to maximize (6). Hence, Then there is an intervdf; — 3,7 + 3|, 5 > 0, where
G must be linear betweer; andZ; to be an entropy the line segmentZ; — 8,y (Z —8))(Z +98),Fu(Z +9))
maximizing distribution. B |ies entirely betweenr and F,, the lower and up-

As we can now restrict our search for entropy maxper envelope curves defined above. The argument of
mizing distributions to those which are piecewise linearemma 3 shows that this segment maximizes the entropy
it will be useful to define the following envelope curveson [Z — 8, Z + 8], and thusFky, being maximal, cannot
Let i, and i be the piecewise linear cdfs connectingass through the poirit, contradicting the assumption.
the pointsv; and|l; respectively. Note that these curveg\ similar argument applies for a decrease in slopa
(shown in Figure 1) represent a tighter envelope which
must be obeyed by any entropy maximizing cdf than the

IV. THE STRING-TIGHTENING ALGORITHM

envelope defined by condition (4). Thus Ry is completely described by the sequence of
. _ _ pegs that it touches, which we call tkeot points Since
F. Existence and uniqueness of solution the entropy function is separable at knot points into

Given piecewise linearity, the set of remaining candindependent sums, and there are a finite number of pegs
dates for the cdf with maximum entropy is parameterizétlat can act as knot points, the search for the set of
by ©, the vector of critical ordinates. That is, to maxiknot points which give the maximum entropy cdf can be

mize entropy, we should evaluate formulated as a shortest path problém.
In particular, consider a directed graph whose vertices
aggegyph(Fo(x)), (10) consist of all the upper pegs and lower pegs;, with

0<i<n+1, and in which there is a directed edge from

whereFg is a piecewise linear cdf depending only &n 3 pegp = (p,, py) to another peg| = (qy,qy) if and only
and ©* is the set of all possibl®. That is,©" is the jt

subset of all ordered—tuples in[0, 1] which satisfy the
constraints on the critical ordinates. See Appendix A for
a formal definition of®*.

Lemma 4:The solution to the optimization problem
(10) exists and is unique.

feasizlrgcg: isAZ 838\;\/: dlr::oi?/gingg AéntgethsﬁugtoNotlce that this graph cannot contain cycles, so it is a
’ Girected acyclic graph (DAG). Hence we can apply the

h(Fe(x)) is strictly concave in©. Therefore the opti-
mization problem (10) has a unique maximum. See tﬁ'engle source shortest path DAG algorithm [2] to find

text by Rockafellar for more on convex optimization [8]. 4we thank one of the anonymous reviewers for suggesting this
B approach to the optimization problem.

o Px < 0Ox

. py<qy, and

« the line segmerpq is between (or coincident with)
the upper and lower bounds andR for piecewise
linear cdfs.



the “least costly” path from the first peg, to the last Exponentil . Mixure of 2 double exp.
PEYVny1.

2 —+— Bound 25

The only remaining detail is to define a weight — e

—— Naive

Entropy
N

for each edge of the graph equal to the negative of th
portion of the entropy function that edge is responsible

for: o py
w(p,q) = (ay — py)log ~*—~. T Logsamples b Logsamples
qX N pX Double exp:nential Mixture of 4 gaussian
With this set up, a (possibly non-unique) shortest patl ° e
through the graph can be found in tirf@V +E), where | s o ; B
V is the number of graph vertices (in this casa+2) 5, - Naive ‘31; - Nave
andE is the number of edges. While it is possible that® 5
the path itself that maximizes entropy is not unique (this *°| ___ ~—— )
can occur if three or more pegs are colinear), we ar . 08 —
guaranteed by Lemma 4 that there is a unique optimg.. Log samples Log samples

cdf corresponding to all shortest paths.
The segments connecting the knots foFg. Its en- Fig. 3. The 95% confidence bound quickly becomes much tighter

tropy, which is our probabilitys bound on the entropy of than the néve bound.

the true distributiorf, is just the negative of the weight

of the shortest path computed by the algorithm. Writing

Exponential Mixture of 2 double exp.

the K final knots as(a;,by;), the entropy can be written | : 08
as 08 06
K_1 0.6
h(Fu) = — Z(bm—bi)logb'”_b'. (11) o
i= dit1— g 02 0.2
A. Examples o - ; ol - !
We shall refer to the process of defining the edge: o oxponenta e of 4 gavsian
of the graph, running the shortest path algorithm, arnes 1
computing the entropy of the resulting graph, together,, 08
as the string-tightening algorithm. Figure 3 compares th 06
95% confidence bound produced by the string-tightenin®* oa
algorithm for several distributions (shown in Figure 4),. o
to the true entropy, obtained by numerical integration
The nave bound logZ,,1 — Zo) is also plotted at the | 5 0 5 s 0 5
top of each graph. Note that the distributions have been
truncated to a finite interval in each case. Fig. 4. The four distributions used in the comparisons in Figure 3.

V. ALTERNATIVE BOUNDS

The bound on the distribution provided by condi-, = |
tion (4) allows for the same degree of uncertainty gﬂstrlbutlon. One would expect that a bound that was as

all points in the empirical cdf. Intuitively, it seems wet'ght a_lstpossmle everywhere would miss equally often at
points.

should be able to bound the distribution more tightly nedl
the ends of the support than in the middle. For empirical As an alternative bound, we use the fact that for sam-
support of this intuition, we ran 10000 experiments withles X; from a continuous distributiofr (x), the values
100 random samples each from a known distributioR,(X) are uniformly distributed orj0,1] [6]. Therefore
and recorded which of the order statistics were outsitlee random variablé(Z;) has the same distribution as
the bound (4) fora = 0.95. The histogram of this datathe i-th order statistic of a uniform variate, i.e., it is
in Figure 5 clearly suggests that the bound provided bgta distributed with parametersaandn—i+ 1 [1]. Its

(4) is not as tight as it could be near the ends of thmeean isﬁ. In particular, this means that for eaictand



0.75 0.8 0.85 0.9 0.95 1

Fig. 5. The bound provided by (4) is too loose near the edgq_s

The histogram shows that in simulations, the bound is violated m Igg 6. Relationship between confidence bounds on the difference
9 ’ Yetween a cdf and the individual order statistics of a sample (given

frequently near the center of the cdf. The_ ho”.zomal axis gives t 0) and the confidenca that all order statistics will be “close” to

height (as a percentage) of the cumulative distribution where t . . :
o - o cdf. These curves were obtained by Monte Carlo simulation.

bound violation occurred, and the vertical axis gives the number 0

violations.

was estimated by drawing one million samples of size
<o<1, from a uniform distribution and evaluating whether any
1-5 148 prder statistics in a give_n sample extended beyond the
P(F(Z) € (B[nlfm(T)»B[nlfm(T))) =9, (12) interval (a&,b;) for any point. _ _

For example, to use this information for bounding
whereBijnl_i+1 is the inverse cdf of the beta distributiorentropy, we note from Figure 6 that for= 100 and
with parameters andn—i+ 1. These bounds are tightetd = 0.998,
wheni is near 0 om, and looser whe is near3. By
design, these bounds will be violated equally often at all

sample locations. Hence using the order statistic bounds as the pegs (i.e.,
To use this information in setting confidence bounc{gkingh = a andv; = bj), we obtain an envelope similar
on a cdf, we need to calculate the probabifity all i of o that defined by (4) on the empirical distribution at
F(Zi) being within the intervals defined by the inversghe sample points, with greater than 95% confidénce.

beta cdfs. For fixedh and 3, let & =By ;,1(}3°) and while these bounds oR(Z) hold only at sample points,
bi =B 1(352). Then we defin@oger Such that by noting that whenF(Z) € (a,b;), we have by the
- . : s monotonicity of the cdf that fow € (Z,_1,7], F(w) < b;.
Oouter = P(VIF(Z1) € (&, b)), (13) Also, whenF (Z) € (a,by), forwe [Z;,Z;,1), F(w) > a.
i.e., the probability that every point on the true cumulaFhis allows us to extend the bounding technique to
tive falls within the bounds provided bg andb;. elements of the domain other than just the sample points.
While it appears to be computationally intractable As an example, Figure 7 illustrates the bounds pro-
to calculate the value od which leads to a particular vided by the order statistics and our simulations, and
confidencenyqer (Or Vice versa), we can estimatg,qer COmMpares them to the bounds provided by condition (4).
as a function o andd by repeatedly drawing sampled~or this example,n = 100 and o = Ogger = 0.975.
of sizen from a known distribution (say, uniform) andFor clarity, we show the bounds relative to the true
examining how frequently the intervals;,b;) are vio- cumulative (in this case a uniform distribution) rather
latedfor at least one value of iThe fraction of violations
5The conditions under which these new bounds provide a unique

ver r rials is an estim — : . ; . - ©
over repeated trials is an estimate (@f- Oorder) ximum entropy distribution are slightly different, but similar, to

: : . m
Figure 6 shows the relationship between the value ﬂg arguments presented for the Massart bound, and are omitted for
0 and agrger for four values ofn. Each value oftogrger brevity.

NI

P(ViF(Z) € (&,bi)) = Oorger > 0.95. (14)



entropy is parameterized b§, the vector of critical
P(z) |- - Massart bound R ordinates. Thus, to maximize entropy, we should evaluate
1}|—Order statistic bounds e argsuph(Fo(x))
¢x' OcO* © ’
0.8/ < where ©* is the set of all possibl® and Fg(x) is the
piecewise linear cdf associated with the critical ordinate
0.6 ©. We wish to show that this optimization problem has
5 a unigue maximum.
0.4r Proof: The set®©* can be characterized by a set of
. linear inequalities:
02F ./
p / ei S Vi, (15)
o e 8 > I (16)
R for0<i<n+1, and
_02 I I I I I I m
0 0.2 0.4 0.6 0.8 1 8 < 61 (17)

Fig. 7. Empirically generated bounds (solid lines) are tighter in sonf@r 0 <i < n.

places and looser in others than those provided by Massart (dashetﬂnequalities (15) and (16) are the restrictions imposed

lines). by the pegs discussed above. The last set of inequal-
ities (17) encodes the fact that the cdf must be non-

decreasing. Together, these inequalities de@rdo be
than an empirical cdf. Note that while the order statistic g. 199 d
a closed convex set.

bounds are slightly looser at the fiftieth percentile, they Next we wish to show that the functiom(Fo(x)) is
are substantially tighter near the ends of the dlstrlbutlon . .
strlctly concave function oB. With Fg(X) piecewise
In fact, substantial portions of the Massart bound are u :
fhear, fo(X) is piecewise constant, and in particular
informative since they extend beyond tftel] interval.
We leave an assessment of which set of bounds are more fo(X) = 0i11—6;

practically useful to future work.  Zi—Z
VI. CONCLUSION on the intervallz;,Z;,1), for 0<i <n.
S Hence, we can write

We have shown how distribution-free bounds on the
cumulative distributions of unknown one-dimensional h(Fe(x)) = h(fe(x)) (18)
probability densities can be used to give sample-based N rZia
probabilistic bounds on the entropies of distributions = 72 /Z fo(x)log fe(x) dx (19)
with known support. As an alternative to providing the 0
support of the distribution, one can provide bounds = —Z} i1— ZIH ZI (20)
on the mean log probability density of the tails of a RN
distribution, and still provide similar bounds. We leave _ Bit1— 6

. . — I+1 ; (21)
this topic to future work. d

We have provided a simple algorithm to compute th& Sing o = 7.1 — Z.
— A+l T Al
bound exactly from samples taken from the unknown Since any giver®; only affects two terms in this sum
distribution. A by-product of the algorithm is an exphmRNe have that. for K i< n ’
representation ofy, the distribution that achieves the ’ -

computed bound. The simple form d&, makes it @
convenient for use in resampling applications. 06
a 9 e| 1 el+1 e
APPENDIXA. PROOF OFLEMMA 4 = 8 (8 —6i-1)log——— o + (641 —6i)log g
Given continuity and piecewise linearity, the set of _(d_1+log 6 —6i_1 —di—log 6|+1d 6.)'
|

remaining candidates for the distribution with maximum — di_1



The second partial derivatives give

9%h di_1 di
D +
ae? (ei —06i_1 6i.1—6 )
for1<i<nand
9%h 9%h
aei aei_l - GGi_l aei (22)
di1
- a1 23
6 —6i_1 @3)

thate > % then a single duplicated point will still admit
continuousky, and essentially all of the arguments of
the main line of reasoning still hold.

The other case is that the duplicated points faatie
cdfs which obey condition (4) to be discontinuous. In
other words, if there are sufficiently many duplicated
points in a sample, there will be no continuous cdf which
satisfies (4). This occurs when< % wherek is the
maximum number of replications of any single value in
the sample. In this case, the Massart inequality ensures

for 2<i<n. All of the other second derivatives are zerghat with high probability, the true distribution has the
To show thath(Foe) is strictly concave, it suffices 10 entropy of a distribution with discontinuous cdf, i.e. an
show that thewn matrix A of second partial derivatives entropy of —c0. Note that in this case, in general, there

(the Hessian) is such that the quadratic form
x"Ax <0

for all vectorsx, i.e., thatA is negative definite.

iS no unique entropy maximizing distribution.
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APPENDIXB: SAMPLES WITH DUPLICATE POINTS

The lemmas above and the string-tightening algorithm
are developed assuming that the sample of siné the
unknown distribution contains no duplicate values. Here
we sketch the necessary changes to arguments to address
the case in which there are one or more duplicate values
in the sample.

Given that there are duplicated values in the sample,
there are two cases to consider. In the first case, condition
(4) is loose enough so that there still exist distributions
which are are continuous and satisfy the condition. For
example, ifn is large enough and is small enough so



