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Abstract— A novel probabilistic upper bound on the
entropy of an unknown one-dimensional distribution, given
the support of the distribution and a sample from that
distribution, is presented. No knowledge beyond the sup-
port of the unknown distribution is required. Previous
distribution-free bounds on the cumulative distribution
function of a random variable given a sample of that
variable are used to construct the bound. A simple, fast,
and intuitive algorithm for computing the entropy bound
from a sample is provided.

I. I NTRODUCTION

The differential entropy of a distribution [9] is a quan-
tity employed ubiquitously in communications, statistical
learning, physics, and many other fields. LetX be a one-
dimensional random variable with absolutely continuous
distribution F(x) and densityf (x). The differential en-
tropy of X is defined to be

h(X) = −
Z ∞

−∞
f (x) log f (x) dx. (1)

Since the entropy ofX depends only upon its density (if
it exists), we also writeh( f ) ≡ h(X).

It is well known [3] that the entropy of a distribution
with support [xL,xR] is at most log(xR− xL), which is
the entropy of the distribution that is uniform over the
support. Given a sample of sizen from an unknown
distribution with this support, we cannot rule out with
certainty the possibility that this sample was drawn from
the uniform distribution over this interval. Thus, we
cannot hope to improve a deterministic upper bound on
the entropy over such an interval when nothing more is
known about the distribution.
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However, given a sample from an unknown distribu-
tion, we can say that it isunlikely to have been drawn
from a distribution with entropy greater than some value.
In this paper, we formalize this notion and give a specific,
probabilistic upper bound for the entropy of an unknown
distribution using both the support of the distribution
and a sample of this distribution. To our knowledge,
this is the first non-trivial upper bound on differential
entropy which incorporates information from a sample
and can be applied to any one-dimensional probability
distribution with a density.

In this work, we restrict our analysis of distributions
F whose entropy we wish to bound to those with den-
sities and finite support. For some distributions without
densities, such as discrete distributions and mixtures of
absolutely continuous distributions with finite support
and discrete distributions, the definition of differential
entropy can be extended to be−∞. Since our algorithm,
presented below, returns an extended real number, it also
returns a valid upper bound for these latter types of
distributions. We do not address the class of singular
distributions (e.g. Cantor distributions), whose entropies
are undefined.

II. T HE BOUND

Let X1,X2, ...,Xn be i.i.d. real-valued random variables
with distribution function F(x) = Prob{X1 ≤ x} and
density f (x).1 Denote the standard empirical distribution
function by

Fn(x) =
1
n

n

∑
i=1

I{Xi≤x},

1We will assume for the remainder of the paper thatn≥ 3, as this
will simplify certain analyses.
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Fig. 1. This figure shows the maximum entropy cumulative
distribution FM which fits the constraints of the Massart inequality
for the given empirical cumulative distribution and some confidence
level α. Notice that the cumulative is piecewise linear, implying a
piecewise constant density function. With probability at leastα, the
true cumulative distributionF has entropy less than or equal to this
maximum entropy distribution.

whereI{E} is the indicator function which takes a value
of 1 whenE is true, and 0 otherwise.

Consider a sample of sizen and the order statistics2

Z1 through Zn of that sample. We assume that the
distribution has finite support and that we know this
support. For ease of exposition, we label the left support
Z0 and the right supportZn+1 making the support values
act like additional order statistics of the sample. But
this is done merely for notational convenience and does
not imply in any way that these are real samples of the
random variable.

It will also be useful to refer to the (extended) entropy
of a distribution directly as a function of its cdf. For
distributions with densities, discrete distributions, and
mixture distributions with cdfG, we defined the extended
entropy, as a function ofG, to be

h(G(x)) =

{

h(dG
dx ) whenG has a density,

−∞ otherwise.
(2)

We start with a bound due to Dvoretzky, Kiefer, and
Wolfowitz [5], and whose constant was determined by
Massart [7], on the supremum of the distance between

2The order statisticsZ1,Z2, ...,Zn of a sampleX1,X2, ...,Xn are
simply the values in the sample arranged in non-decreasing order.
Hence,Z1 is the minimum sample value,Z2 the next largest value,
and so on.

the empiricaln-sample cumulative,Fn(x), and the true
distribution:

P(sup
x
|F(x)−Fn(x)| > ε) ≤ 2e−2nε2 ≡ 1−α. (3)

Thus, with probabilityat least α, the true cumulative
does not differ from the empirical cumulative by more
than ε. This is a distribution-free bound. That is, it
holds for any one-dimensional probability distribution.
For background on such bounds and their uses, see the
text by Devroye et al. [4].

For a given empirical distributionFn, consider the
family C (Fn) of cumulative distribution functionsG(x)
that satisfy the condition

sup
x
|G(x)−Fn(x)| ≤ ε. (4)

Let h∗ be the supremum of the entropies of these
functions, i.e.

h∗ = sup
G∈C (Fn)

h(G(x)).

We present an algorithm that constructs a distribution
FM(x) whose entropy attains this supremum. Further-
more, we show that this distribution is unique. In other
words, the algorithm constructs the unique distribution
with maximum entropy that satisfies condition (4). This
establishes a probabilistic upper bound on the entropy
of the distribution from which the original sample was
drawn.

Figure 1 illustrates some of the basic ideas of the
paper. The central piecewise constant curve is a typical
empirical cdf. The outer curves are confidence bounds
for the true cumulative distribution based upon (3).3 The
piecewise linear curveFM between the bounds shows the
maximum entropy distribution within the bounds. Note
that this maximum entropy distribution follows the same
path that would be followed by a string which has been
threaded through the “tube” provided by the upper and
lower bounding curves and then pulled tight. For this
reason, we call the algorithm which generates this curve
the string-tightening algorithm.

III. A PPROACH

We proceed as follows:
1) Consider again a sample of sizen from an un-

known one-dimensional distribution. We handle

3More precisely, the outer curves are slight modifications of the
envelope suggested by (3) which restrict the curve to obey the bound
and to be piecewise linear and continuous between sample points. We
show in Lemma 3 that any entropy maximizing cdf must be piecewise
linear and continuous.



separately the cases in which there are no duplicate
sample values and in which there are duplicates.
We address the latter case in Appendix B. When
there are no duplicate sample values, we show
that any entropy-maximizing distribution must be
continuous.

2) For a given sample, at each sample point, we define
sets of pairs of points calledpegs, between which
a continuous cdf must pass to obey the bound.

3) Now consider a distributionG(x) with continuous
cdf that is a candidate for the maximum entropy
distribution. We refer to the valuesG(Zi) of the cdf
evaluated at the samplesZi as thecritical ordinates
of G(x). Likewise, we refer to the ordered pairs
(Zi ,G(Zi)) as thecritical pointsof G(x). We show
that among cdfs with a particular set of critical
points, the piecewise linear cdf maximizes the
entropy.

4) Thus, to find a globally entropy-maximizing cdf,
it is enough to consider piecewise linear functions,
since for any cdf that is not piecewise linear,
there exists another admissible one that is piece-
wise linear and has larger differential entropy. The
piecewise linear cdfs can be parameterized by
their critical ordinates. Let the vector of critical
ordinates be represented byΘ = [θ1θ2...θn]

T . We
show that the entropy of these piecewise linear
cdfs is a strictly convex function ofΘ and that
finding the Θ that maximizes the entropy is a
convex optimization problem over a closed convex
set. Hence it has a unique maximum.

5) We then show that the entropy maximizing cdf,
in addition to being piecewise linear, must bend
upward only at upper pegs and downward only at
lower pegs.

6) Since only a finite number of cdfs satisfy this
condition, it suffices to consider each of these can-
didates for the maximum entropy distribution. We
provide a simple graph algorithm that efficiently
finds the maximum entropy distribution from this
finite set, and show how to calculate the entropy
of the resulting distribution.

Now we provide details.

A. Sample point bounds

For a desired confidence levelα, we can compute a
correspondingε from (3) that meets that level:

ε =

√

− ln 1−α
2

2n
. (5)

Fig. 2. This figure shows, in detail, a portion of an empirical
distribution and the plus-or-minusε bounds of (4). The empirical
cumulative distribution is shown by the thicker horizontal lines. The
left end of each segment of the distribution is shown as a closed
circle, and the right end with an open circle, to denote the semi-open
interval spanned by each segment. The upper and lower bounds are
shown by the thinner horizontal lines. Note in particular the points
ui , l i ,ui+1, andl i+1 at the order statistic locationsZi andZi+1. These
points bracket the function (according to the bound) at the sample
values. Furthermore, since any entropy maximizing distribution must
be continuous (Lemma 2), at the sample valueZi+1 an entropy
maximizing distribution must also have an ordinate value at or below
the point vi+1. We refer to the lower bracketing pointsl i and the
tighter upper bracketing pointsvi as pegs. These pegs are the only
locations at which the maximum entropy cumulative distribution can
potentially bend (Lemma 5).

We conclude that with probabilityα, the true distribution
lies within thisε of the empirical distribution at allx.

The upper bound on the ordinate at sample pointZi

is given by

ui = min(
i
n

+ ε,1).

Similarly, the lower bound is given by

l i = max(
i
n
− ε,0).

As shown in Figure 2, we also define thepoints or
ordered pairs corresponding to these bounds as

ui = (Zi ,ui)

and
l i = (Zi , l i),

for 1≤ i ≤ n. Additionally, we defineu0 = l0 = 0, un+1 =
ln+1 = 1, u0 = l0 = (Z0,0) andun+1 = ln+1 = (Zn+1,1).

B. Existence of certain cdfs

Lemma 1:For a sample with no repeated values and
a given confidenceα, there exists at least one cdf which
satisfies condition (4) and that is continuous and is
linear between successive order statistics (and hence is
piecewise linear).



Proof: Note that for a confidence levelα, ε is
always larger than the step size of the cdf, since

ε ≥

√

− ln 1−0
2

2n

=

√

ln2
2

· 1√
n

>
1
n
, ∀n≥ 3.

Given this relationship betweenε and 1
n, we note that the

cdf which is linear between order statistics and which
connectsl i to l i+1 satisfies condition (4) at every point.
(See Figure 2.)

C. Continuity of cdfs

Lemma 2:For samples without repeated values,
among cdfs that meet condition (4), a cdf with disconti-
nuities cannot maximize entropy.

Proof: The differential entropy of any cdf with
discontinuities is−∞. Since by Lemma 1 there always
exists a cdf without discontinuities that satisfies (4), there
is always at least one cdf that will have entropy greater
than any non-continuous cdf.

Hence, in searching for a cdf with maximimum en-
tropy, it is enough to consider only continuous cdfs.

D. Pegs

The points ui and l i defined above represent the
straightforward application of (3) at the sample points.
Using Lemma 2 we can tighten these bounds for the
entropy maximizing distribution, if it exists. In particular,
referring again to Figure 2, at a sample pointZi+1, while
condition (4) allows the cdf to pass through a pointa =
(Zi+1,b), whereui < b≤ ui+1, such a curve cannot be an
entropy maximizing cdf since it will have a discontinuity
at Zi+1. This discontinuity would be unavoidable for a
cdf containinga, since to the left of the sampleZi+1 the
curve is upper bounded byui . Thus,at a sample point
Zi , any continuous cdf is upper bounded by the value

vi = min(
i
n

+ ε− 1
n
,1),

for 1≤ i ≤ n. As before we definev0 = 0 andvn+1 = 1
for notational convenience. We also define thepoints

vi = (Zi ,vi)

for 0≤ i ≤ n+1. Figure 2 shows the location ofvi+1.
Together, we refer to the pointsvi andl i at the sample

points aspegs, and they will play a key role. As we
have just shown, at each sample point, any entropy

maximizing cdf must pass between each pair of pegs (or
pass through one of the pegs). It follows immediately that
unless each critical point(Zi ,G(Zi)) of a cdf G(x) falls
between (or on) the pegsvi and l i , such a cdf cannot
be the maximum we are seeking. We refer to critical
points which fall between (or on) pegs asadmissible
critical pointsand to their ordinates asadmissible critical
ordinates.

E. Piecewise linearity of cdfs

Lemma 3:Among the cdfs with a particular set of
admissible critical ordinates, the one which is piecewise
linear both satisfies condition (4) and maximizes the
entropy.

Proof: Assuming all are admissible, let the critical
ordinates of a cdf atZi be denotedθi . Then the set of
critical ordinates for a cdf can be encoded as a parameter
vector Θ = {θ0,θ1, ...,θn+1}, where θ0 and θn+1 are 0
and 1 by definition, but the otherθi can be chosen
to maximize entropy. Now consider the set of possible
cdfs with a particular set of critical ordinatesΘ and a
corresponding set of critical points.

Becauseε >
1
n and thevi upper bound cdfs with admis-

sible critical ordinates at the sample points, condition (4)
admits any cdf that is linear between successive critical
points (see Figure 2).

We next show for any set of critical ordinatesΘ, the
cdf with those critical ordinates that maximizes entropy
is piecewise linear between the corresponding critical
points.

Note that the entropy function for a cdfG(x) is sepa-
rable into integrals over the interval of interest[Zi ,Zi+1]
and the remainder of the real line[Zi ,Zi+1]:

h(G) = −
Z Zi+1

Zi

g(x) logg(x) dx

−
Z

[Zi ,Zi+1]
g(x) logg(x) dx.

Because of this separability, conditioned on specific
values for critical ordinatesθi and θi+1, the cdf must
maximize each of the terms above separately.

Focussing on the first term, lettingG be the set of
all continuous monotonic non-decreasing functions over
[Zi ,Zi+1], and withg(x) = dG(x)

dx , we have



max
G∈G

[

−
Z Zi+1

Zi

g(x) logg(x)dx

]

(6)

= max
G∈G

[

−
Z Zi+1

Zi

g(x) [logg(x)− log(C)]dx

]

(7)

= max
G∈G

[

−
Z Zi+1

Zi

g(x) log
g(x)
C

dx

]

(8)

= max
G∈G

[

−
Z Zi+1

Zi

g(x)
C

log
g(x)
C

dx

]

. (9)

.
The last expression is just the entropy of the dis-

tribution d(x) = g(x)
C , which for the right choice ofC

is a properly normalized probability distribution over
[Zi ,Zi+1]. It is well-known [3] thatd(x) must be uniform
(excluding a set of measure 0) to maximize entropy over
a finite interval. This in turn, implies thatg(x) must be
uniform betweenZi and Zi+1 to maximize (6). Hence,
G must be linear betweenZi and Zi+1 to be an entropy
maximizing distribution.

As we can now restrict our search for entropy maxi-
mizing distributions to those which are piecewise linear,
it will be useful to define the following envelope curves.
Let Fv and Fl be the piecewise linear cdfs connecting
the pointsvi and l i respectively. Note that these curves
(shown in Figure 1) represent a tighter envelope which
must be obeyed by any entropy maximizing cdf than the
envelope defined by condition (4).

F. Existence and uniqueness of solution

Given piecewise linearity, the set of remaining candi-
dates for the cdf with maximum entropy is parameterized
by Θ, the vector of critical ordinates. That is, to maxi-
mize entropy, we should evaluate

argsup
Θ∈Θ∗

h(FΘ(x)), (10)

whereFΘ is a piecewise linear cdf depending only onΘ
and Θ∗ is the set of all possibleΘ. That is, Θ∗ is the
subset of all orderedn−tuples in[0,1] which satisfy the
constraints on the critical ordinates. See Appendix A for
a formal definition ofΘ∗.

Lemma 4:The solution to the optimization problem
(10) exists and is unique.

Proof: As shown in Appendix A, the setΘ∗ of
feasible Θ is a closed convex set, and the function
h(FΘ(x)) is strictly concave inΘ. Therefore the opti-
mization problem (10) has a unique maximum. See the
text by Rockafellar for more on convex optimization [8].

G. “String” bends only at pegs

Let FM be the unique entropy maximizing distribution.
As shown above,FM should be piecewise linear, with
any “bends”, or changes in slope, occurring only at
the critical points. Intuitively, using the string-tightening
analogy, as the string is tightened, one might guess that
that these slope changes can occur only at the pegs,
which we prove here.

Lemma 5:An increase (decrease) in slope ofFM can
occur only at the upper (lower) peg of a sample.

Proof: By contradiction. Define the pointsa,b, and
c to be (Zi−1,a), (Zi ,b), and(Zi+1,c) respectively, with
a ≤ b ≤ c and 1≤ i ≤ n. Suppose that there are two
connected segments ofFM, ab andbc. Now suppose that
b< vi (it is below the upper peg) and the pointb is below
the line segmentac. That is, the slope of the cdf increases
at b.

Then there is an interval[Zi −δ,Zi +δ], δ > 0, where
the line segment(Zi −δ,FM(Zi −δ))(Zi +δ),FM(Zi +δ))
lies entirely betweenFl and Fv, the lower and up-
per envelope curves defined above. The argument of
Lemma 3 shows that this segment maximizes the entropy
on [Zi − δ,Zi + δ], and thusFM, being maximal, cannot
pass through the pointb, contradicting the assumption.
A similar argument applies for a decrease in slope.

IV. T HE STRING-TIGHTENING ALGORITHM

Thus FM is completely described by the sequence of
pegs that it touches, which we call theknot points. Since
the entropy function is separable at knot points into
independent sums, and there are a finite number of pegs
that can act as knot points, the search for the set of
knot points which give the maximum entropy cdf can be
formulated as a shortest path problem.4

In particular, consider a directed graph whose vertices
consist of all the upper pegsvi and lower pegsl i , with
0≤ i ≤ n+1, and in which there is a directed edge from
a pegp = (px, py) to another pegq = (qx,qy) if and only
if

• px < qx,
• py ≤ qy, and
• the line segmentpq is between (or coincident with)

the upper and lower boundsFv andFl for piecewise
linear cdfs.

Notice that this graph cannot contain cycles, so it is a
directed acyclic graph (DAG). Hence we can apply the
single-source shortest path DAG algorithm [2] to find

4We thank one of the anonymous reviewers for suggesting this
approach to the optimization problem.



the “least costly” path from the first pegv0 to the last
pegvn+1.

The only remaining detail is to define a weightw
for each edge of the graph equal to the negative of the
portion of the entropy function that edge is responsible
for:

w(p,q) = (qy− py) log
qy− py

qx− px
.

With this set up, a (possibly non-unique) shortest path
through the graph can be found in timeO(V +E), where
V is the number of graph vertices (in this case, 2n+2)
and E is the number of edges. While it is possible that
the path itself that maximizes entropy is not unique (this
can occur if three or more pegs are colinear), we are
guaranteed by Lemma 4 that there is a unique optimal
cdf corresponding to all shortest paths.

The segments connecting the knots formFM. Its en-
tropy, which is our probability-α bound on the entropy of
the true distributionF , is just the negative of the weight
of the shortest path computed by the algorithm. Writing
the K final knots as(ai ,bi), the entropy can be written
as

h(FM) = −
K−1

∑
i=1

(bi+1−bi) log
bi+1−bi

ai+1−ai
. (11)

A. Examples

We shall refer to the process of defining the edges
of the graph, running the shortest path algorithm, and
computing the entropy of the resulting graph, together,
as the string-tightening algorithm. Figure 3 compares the
95% confidence bound produced by the string-tightening
algorithm for several distributions (shown in Figure 4)
to the true entropy, obtained by numerical integration.
The näıve bound log(Zn+1 −Z0) is also plotted at the
top of each graph. Note that the distributions have been
truncated to a finite interval in each case.

V. A LTERNATIVE BOUNDS

The bound on the distribution provided by condi-
tion (4) allows for the same degree of uncertainty at
all points in the empirical cdf. Intuitively, it seems we
should be able to bound the distribution more tightly near
the ends of the support than in the middle. For empirical
support of this intuition, we ran 10000 experiments with
100 random samples each from a known distribution,
and recorded which of the order statistics were outside
the bound (4) forα = 0.95. The histogram of this data
in Figure 5 clearly suggests that the bound provided by
(4) is not as tight as it could be near the ends of the
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Fig. 3. The 95% confidence bound quickly becomes much tighter
than the näıve bound.
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distribution. One would expect that a bound that was as
tight as possible everywhere would miss equally often at
all points.

As an alternative bound, we use the fact that for sam-
ples Xi from a continuous distributionF(x), the values
F(Xi) are uniformly distributed on[0,1] [6]. Therefore
the random variableF(Zi) has the same distribution as
the i-th order statistic of a uniform variate, i.e., it is
beta distributed with parametersi and n− i + 1 [1]. Its
mean is i

n+1. In particular, this means that for eachi, and
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1
2 ≤ δ ≤ 1,

P(F(Zi) ∈ (β−1
i,n−i+1(

1−δ
2

),β−1
i,n−i+1(

1+δ
2

))) = δ, (12)

whereβ−1
i,n−i+1 is the inverse cdf of the beta distribution

with parametersi andn− i +1. These bounds are tighter
when i is near 0 orn, and looser wheni is near n

2. By
design, these bounds will be violated equally often at all
sample locations.

To use this information in setting confidence bounds
on a cdf, we need to calculate the probabilityfor all i of
F(Zi) being within the intervals defined by the inverse
beta cdfs. For fixedn and δ, let ai = β−1

i,n−i+1(
1−δ

2 ) and
bi = β−1

i,n−i+1(
1+δ

2 ). Then we defineαorder such that

αorder ≡ P(∀i F (Zi) ∈ (ai ,bi)), (13)

i.e., the probability that every point on the true cumula-
tive falls within the bounds provided byai andbi .

While it appears to be computationally intractable
to calculate the value ofδ which leads to a particular
confidenceαorder (or vice versa), we can estimateαorder

as a function ofn andδ by repeatedly drawing samples
of size n from a known distribution (say, uniform) and
examining how frequently the intervals(ai ,bi) are vio-
latedfor at least one value of i. The fraction of violations
over repeated trials is an estimate of(1−αorder).

Figure 6 shows the relationship between the value of
δ and αorder for four values ofn. Each value ofαorder
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Fig. 6. Relationship between confidence bounds on the difference
between a cdf and the individual order statistics of a sample (given
by δ) and the confidenceα that all order statistics will be “close” to
the cdf. These curves were obtained by Monte Carlo simulation.

was estimated by drawing one million samples of sizen
from a uniform distribution and evaluating whether any
order statistics in a given sample extended beyond the
interval (ai ,bi) for any point.

For example, to use this information for bounding
entropy, we note from Figure 6 that forn = 100 and
δ = 0.998,

P(∀i F (Zi) ∈ (ai ,bi)) = αorder > 0.95. (14)

Hence using the order statistic bounds as the pegs (i.e.,
taking l i = ai andvi = bi), we obtain an envelope similar
to that defined by (4) on the empirical distribution at
the sample points, with greater than 95% confidence.5

While these bounds onF(Zi) hold only at sample points,
by noting that whenF(Zi) ∈ (ai ,bi), we have by the
monotonicity of the cdf that forw∈ (Zi−1,Zi ], F(w) < bi .
Also, whenF(Zi)∈ (ai ,bi), for w∈ [Zi ,Zi+1), F(w) > ai .
This allows us to extend the bounding technique to
elements of the domain other than just the sample points.

As an example, Figure 7 illustrates the bounds pro-
vided by the order statistics and our simulations, and
compares them to the bounds provided by condition (4).
For this example,n = 100 and α = αorder = 0.975.
For clarity, we show the bounds relative to the true
cumulative (in this case a uniform distribution) rather

5The conditions under which these new bounds provide a unique
maximum entropy distribution are slightly different, but similar, to
the arguments presented for the Massart bound, and are omitted for
brevity.
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than an empirical cdf. Note that while the order statistic
bounds are slightly looser at the fiftieth percentile, they
are substantially tighter near the ends of the distribution.
In fact, substantial portions of the Massart bound are un-
informative since they extend beyond the[0,1] interval.
We leave an assessment of which set of bounds are more
practically useful to future work.

VI. CONCLUSION

We have shown how distribution-free bounds on the
cumulative distributions of unknown one-dimensional
probability densities can be used to give sample-based
probabilistic bounds on the entropies of distributions
with known support. As an alternative to providing the
support of the distribution, one can provide bounds
on the mean log probability density of the tails of a
distribution, and still provide similar bounds. We leave
this topic to future work.

We have provided a simple algorithm to compute this
bound exactly from samples taken from the unknown
distribution. A by-product of the algorithm is an explicit
representation ofFM, the distribution that achieves the
computed bound. The simple form ofFM makes it
convenient for use in resampling applications.

APPENDIX A. PROOF OFLEMMA 4

Given continuity and piecewise linearity, the set of
remaining candidates for the distribution with maximum

entropy is parameterized byΘ, the vector of critical
ordinates. Thus, to maximize entropy, we should evaluate

argsup
Θ∈Θ∗

h(FΘ(x)),

whereΘ∗ is the set of all possibleΘ and FΘ(x) is the
piecewise linear cdf associated with the critical ordinates
Θ. We wish to show that this optimization problem has
a unique maximum.

Proof: The setΘ∗ can be characterized by a set of
linear inequalities:

θi ≤ vi , (15)

θi ≥ l i , (16)

for 0≤ i ≤ n+1, and

θi ≤ θi+1 (17)

for 0≤ i ≤ n.
Inequalities (15) and (16) are the restrictions imposed

by the pegs discussed above. The last set of inequal-
ities (17) encodes the fact that the cdf must be non-
decreasing. Together, these inequalities defineΘ∗ to be
a closed convex set.

Next we wish to show that the functionh(FΘ(x)) is
a strictly concave function ofΘ. With FΘ(x) piecewise
linear, fΘ(x) is piecewise constant, and in particular

fΘ(x) =
θi+1−θi

Zi+1−Zi
,

on the interval[Zi ,Zi+1), for 0≤ i ≤ n.
Hence, we can write

h(FΘ(x)) = h( fΘ(x)) (18)

= −
n

∑
i=0

Z Zi+1

Zi

fΘ(x) log fΘ(x) dx (19)

= −
n

∑
i=0

(θi+1−θi) log
θi+1−θi

Zi+1−Zi
(20)

= −
n

∑
i=0

(θi+1−θi) log
θi+1−θi

di
, (21)

usingdi = Zi+1−Zi .
Since any givenθi only affects two terms in this sum,

we have that, for 1≤ i ≤ n,

∂h
∂θi

=
∂

∂θi
−

[

(θi −θi−1) log
θi −θi−1

di−1
+(θi+1−θi) log

θi+1−θi

di

]

= −(di−1 + log
θi −θi−1

di−1
−di − log

θi+1−θi

di
).



The second partial derivatives give

∂2h

∂θ2
i

= −(
di−1

θi −θi−1
+

di

θi+1−θi
)

for 1≤ i ≤ n and

∂2h
∂θi ∂θi−1

=
∂2h

∂θi−1 ∂θi
(22)

=
di−1

θi −θi−1
(23)

for 2≤ i ≤ n. All of the other second derivatives are zero.
To show thath(FΘ) is strictly concave, it suffices to

show that thenxn matrix A of second partial derivatives
(the Hessian) is such that the quadratic form

xTAx < 0

for all vectorsx, i.e., thatA is negative definite.
Expanded in terms of components, the quadratic form

can be written
n

∑
i=1

∂2h

∂θ2
i

x2
i +

n

∑
i=2

∂2h
∂θi θi−1

xixi−1

=
n

∑
i=1

−(
di−1

θi −θi−1
+

di

θi+1−θi
)x2

i +
n

∑
i=2

di−1

θi −θi−1
xixi−1

= − d0

θ1−θ0
− dn

θn+1−θn

−
n

∑
i=2

(x2
i−1−2xi−1xi +x2

i )
di

θi+1−θi

= − d0

θ1−θ0
− dn

θn+1−θn
−

n

∑
i=2

(xi−1−xi)
2 di

θi+1−θi

< 0.

The last inequality follows since thedi ’s and the differ-
ences in successiveθi ’s are uniformly positive. Hence,
A is negative definite andh(FΘ) is strictly concave.

Any strictly concave function defined over a closed
convex set has a unique maximum [8].

APPENDIX B: SAMPLES WITH DUPLICATE POINTS

The lemmas above and the string-tightening algorithm
are developed assuming that the sample of sizen of the
unknown distribution contains no duplicate values. Here
we sketch the necessary changes to arguments to address
the case in which there are one or more duplicate values
in the sample.

Given that there are duplicated values in the sample,
there are two cases to consider. In the first case, condition
(4) is loose enough so that there still exist distributions
which are are continuous and satisfy the condition. For
example, ifn is large enough andε is small enough so

that ε >
2
n then a single duplicated point will still admit

continuousFM, and essentially all of the arguments of
the main line of reasoning still hold.

The other case is that the duplicated points forceall
cdfs which obey condition (4) to be discontinuous. In
other words, if there are sufficiently many duplicated
points in a sample, there will be no continuous cdf which
satisfies (4). This occurs whenε <

k
n, where k is the

maximum number of replications of any single value in
the sample. In this case, the Massart inequality ensures
that with high probability, the true distribution has the
entropy of a distribution with discontinuous cdf, i.e. an
entropy of−∞. Note that in this case, in general, there
is no unique entropy maximizing distribution.
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