
The UMass Mobile Manipulator UMan:
An Experimental Platform for Autonomous Mobile Manipulation

Dov Katz, Emily Horrell, Yuandong Yang, Brendan Burns, Thomas Buckley
Anna Grishkan, Volodymyr Zhylkovskyy, Oliver Brock, Erik Learned-Miller

Department of Computer Science
University of Massachusetts Amherst

Abstract— Research in Autonomous Mobile Manipulation crit-
ically depends on the availability of adequate experimental
platforms. In this paper, we describe an ongoing effort at the
University of Massachusetts Amherst to construct a hardware
platform with redundant kinematic degrees of freedom, a com-
prehensive sensor suite, and significant end-effector capabilities
for manipulation. In our research, we pursue an end-effector
centric view of autonomous mobile manipulation. In support
of this view, we are developing a comprehensive software suite
to provide a high level of competency in robot control and
perception. This software suite is based on a multi-objective, task-
level motion control framework. We use this control framework
to integrate a variety of motion capabilities, including task-
based force or position control of the end-effector, collision-free
global motion for the entire mobile manipulator, and mapping
and navigation for the mobile base. We also discuss our efforts
in developing perception capabilities targeted to problems in
autonomous mobile manipulation. Preliminary experiments on
our UMass Mobile Manipulator (UMan) are presented.

I. INTRODUCTION

Autonomous robots are beginning to address real-world
tasks in unstructured and dynamic environments. Today these
robots predominantly perform tasks based on mobility. How-
ever, the potential of augmenting autonomous mobility with
dexterous manipulation skills is significant and has numerous
important applications, ranging from in-orbit satellite servicing
to elderly care and flexible manufacturing [3]. The successful
deployment of autonomous robots that combine manipula-
tion skills with mobility, however, still requires substantial
scientific advances in a variety of research areas, including
autonomous manipulation in unstructured environments, per-
ception, and system integration. In support of research in
these areas, we are developing and constructing the mobile
manipulation platform UMan (UMass Mobile Manipulator).
In this paper, we discuss the objectives for building such a
platform, describe our approach of combining software and
hardware to provide an adequate level of competency for
research, and report on progress with preliminary research
initiatives.

A platform adequate for research in autonomous mobile
manipulation has to combine mobility with dexterous manip-
ulation. A manipulator with a dexterous end-effector allows
complex interactions with objects in the environment. And
mobility extends the workspace of the manipulator, posing
new challenges by permitting the robot to operate in unstruc-
tured environments. In such environments it is impossible to
anticipate all scenarios and to pre-program the behavior of

the robot. Manipulation in combination with mobility thus
requires algorithmic approaches that are versatile and general.
The variability and complexity of unstructured environments
also require algorithmic approaches that permit the robot to
continuously improve its skills from its interactions with the
environment. Furthermore, the combination of mobility and
manipulation poses new challenges for perception as well as
the integration of skills and behaviors over a wide range of
spatial and temporal scales.

Fig. 1. UMan, the UMass Mobile Manipulator

The mobile manipulation platform UMan, shown in Fig-
ure 1, has been designed to support our research in algo-
rithms and control for autonomous mobile manipulation. Due
to the focus on dexterous manipulation, UMan’s ability to
perform physical work in its environment was of particular
importance during the design process. Our objective was to
build a hardware platform with redundant kinematic degrees
of freedom, a comprehensive sensor suite, and significant
end-effector capabilities for manipulation. Since the focus of
our research is on algorithms and not on hardware design,
we chose to use mostly off-the-shelf components in UMan’s
construction.

UMan differs from related robotic platforms (see Sec-
tion II) because of our end-effector centric, integrated view



of hardware and software infrastructure. This combination of
hardware and software results in an experimental platform
that permits researchers to focus solely on the specification
of end-effector behavior without having to worry about the
motion of the remaining degrees of freedom. Furthermore,
UMan is one of the few platforms currently available that
combines mobility with dexterous manipulation capabilities.
Most comparable platforms are limited in either dexterity or
mobility. A more detailed review of related hardware platforms
will be presented in the next section.

II. RELATED PLATFORMS

Most current robotic platforms focus on one of two com-
plementary aspects of autonomous mobile manipulation: bi-
manual dexterous manipulation or bipedal mobility.

Bi-manual robots consist of a torso, two arms and dex-
terous hands. Examples from this category include UMass’s
Dexter [8], a bi-manual robot consisting of two commercial
seven degree-of-freedom arms (Barrett’s WAM [24]) and
three-fingered hands. Dexter’s arms are stiff with negligible
inherent compliance, requiring active control of compliance
using accurate force sensing. Its hands have four degrees
of freedom each, and can afford various dexterous tasks. In
contrast to Dexter, MIT’s bi-manual robot Domo [6] employs
series elastic actuators in its two arms, providing inherent com-
pliance for safe interactions with objects in the environment.
NASA’s Robonaut [2], a humanoid torso designed to assist or
replace astronauts, closely imitates the kinematics of human
arms and hands. Robonaut has performed complex dextrous
manipulation tasks, resembling tasks performed by astronauts
in space. Other examples of a bi-manual manipulation platform
include Clara at the Technical University Munich and Justin
at DLR in Germany. These stationary, bi-manual platforms
are designed for dexterous manipulation and benefit from
having two arms that can cooperate in manipulation tasks.
However, these platforms have limited workspace and cannot
be deployed in large unstructured environments.

Fig. 2. Bi-manual robots: Dexter (UMass Amherst), Clara (Technical
University Munich), Domo (MIT), Robonaut (JSC, NASA), Justin (DLR,
Germany)

The development of legged robots, such as Honda’s
ASIMO [17], has focused on issues of bipedal locomotion.
Legs seem to be better suited than wheels for locomotion
in human environments. Due to the focus on locomotion,
the manipulation capabilities of these platforms are often
limited. For example, ASIMO’s hands only possess a single
degree of freedom and are not able to perform complex
manipulation tasks. Other examples are Sony’s QRIO [19],
Kwada Industries’ HRP2 [12], Waseda University Tokyo’s

WABIAN RIII [26], and the Toyota Partner Robot [25]. All
of these platforms have brought about significant advances
in bipedal locomotion and mechanical design, but have had
limited impact in the area of autonomous mobile manipulation.

Fig. 3. Examples of legged humanoid robots: Asimo (Honda), QRIO (Sony),
HRP-3 (Kawada Industries), WABIAN RIII (Waseda University Tokyo),
Toyota Partner Robot

Ideally, the advances in bi-manual manipulation and lo-
comotion could be combined to provide competent experi-
mental platforms for autonomous mobile manipulation. Such
platforms could navigate in complex, human indoor and out-
door environments to perform dexterous manipulation tasks.
Unfortunately, such integration is not straight-forward. Most
commercial manipulators are heavy, large, and power hungry.
Consequently, highly mobile robots, such as legged mobility
platforms, cannot easily accommodate dexterous manipulators.
To overcome this challenge, most existing mobile manipula-
tion platforms rely on less flexible mobility solutions. One
of the earliest mobile manipulators, the Stanford Assistant
Mobile Manipulation (SAMM) [10] consists of a holonomic
Nomadic XR4000 base and a PUMA 560 manipulator arm,
equipped with a parallel-jaw gripper. The mobile manipulation
platform ARMAR [21] at the University of Karlsruhe consists
of two arms mounted on a wheeled mobile base, two parallel-
jaw grippers, and a stereo vision head. The Stanford AI
Robot (STAIR) uses a modified Segway RMP in tractor mode
for mobility; a five degree-of-freedom manipulator with a
parallel-jaw gripper provides manipulation capabilities. Other
examples of mobile manipulators can be found at Örebro
University (PANDI1), at the Centre for Autonomous Systems
at the Royal Institute of Technology, and at the Robotics and
Automation Laboratory at Michigan State University.

III. HARDWARE PLATFORM

UMan consists of a holonomic mobile base with three
degrees of freedom, a seven degree-of-freedom manipulator
arm, and a four degree-of-freedom hand.

Our main objective was to support dexterous manipulation
on a mobile platform. To achieve this objective for a single,
integrated system, it was not possible to optimize every aspect
of the platform; instead, we had to carefully balance different
constraints. We strove to provide adequate end-effector ca-
pabilities for a wide range of dexterous manipulation tasks.
We considered mobility as additional degrees of freedom in
service to manipulation, rather than as an objective itself. We
therefore choose a mode of mobility that maximally supports
manipulation without imposing additional constraints.



Fig. 4. Examples of mobile manipulators: ARMAR (University of Karlsruhe),
PANDI1 (Örebro University), SAMM (Stanford University)

At the same time, we focused on the use of commercially
available components. This facilitates recreating our results,
as well as encourages standardization in robotics hardware.
We justify this choice with the following observation: NASA
researchers at JSC were able to perform dexterous manip-
ulation tasks by teleoperating Robonaut. In particular, they
teleoperated Robonaut to perform complex maintenance tasks
on a model of the Hubble space telescope [1]. These ex-
periments demonstrate that existing hardware is in principle
capable of performing complex dexterous manipulation tasks.
Consequently, we believe that algorithmic aspects currently
represent the most important challenge in autonomous mobile
manipulation.

A. Actuation

UMan’s mobility is provided by a modified Nomadic
XR4000 mobile base. Its four casters are dynamically de-
coupled [5] to provide holonomic motion, which facilitates
a unified control scheme for degrees of freedom associated
with mobility and manipulation. This unified control scheme
leverages all degrees of freedom to be able to exploit kinematic
redundancies when performing multi-objective behavior (see
Section IV). Other modes of mobility, such as legged locomo-
tion or dynamically stable mobility platforms (Segway RMP),
result in additional challenges pertaining to the coordination of
mobility and manipulation. While these challenges represent
interesting research problems by themselves, our objective
was to build a hardware platform that maximally facilitates
research in autonomous manipulation. Therefore, we chose a
holonomic mobility platform that supports the coordination of
mobility and manipulation.

The XR4000 mobile platform was specifically designed for
mobile manipulation. Its power system allows untethered op-
eration of UMan for several hours. The wheels and the frame
of the mobile base are designed to be very stiff and damped
so that accurate position control of the mobile manipulator
is feasible. This advantageous property reduces the ability to
navigate on uneven terrain, a cost we were willing to pay
since we do not think it fundamentally limits our ability to

perform our research. Finally, the base is sized to be able to
contain adequate computational resources (see Section III-B)
and sensors (see Section III-C).

A Barrett Technologies Whole Arm Manipulator (WAM)
with seven anthropomorphic degrees of freedom (three in the
shoulder, one in the elbow, three in the wrist, see figure 5)
together with the three-fingered Barrett hand provide UMan’s
dexterous manipulation capabilities. The new lightweight de-
sign of the WAM has very low power consumption and is
thus well-suited for mobile applications. All electronics for
the control of the arm are built into the arm itself, facilitating
its integration with a mobile platform. The WAM provides
good dynamic performance and torque sensing in its joints.
It is thus capable of using all of its links to perform force-
controlled manipulation tasks.

Fig. 5. Barrett Technologies Whole Arm Manipulator (WAM)

The three-fingered Barrett hand (see figure 6) can flex any of
its three-link fingers individually. A fourth degree of freedom
in the hand permits switching between an enveloping grasp
to grasp with an opposing thumb. While this hand is clearly
less dexterous than the human hand, it provides significantly
more dexterity than the parallel-jaw grippers that can be found
on most mobile manipulators today. Robonaut mounted on a
Segway RMP represents a notable exception.

Fig. 6. Barrett Technologies three-fingered hand

B. Computation

UMan’s mobile base houses two single-board PCs with
Pentium 4 2.4GHz CPUs (see figure 7). One of these PCs is
dedicated to real-time control of the base and the manipulator
arm. It is running the real-time operating system QNX [16].



The other PC is running Linux and is dedicated to higher-
level tasks, such as vision processing, navigation, motion
planning, and task planning. Both computers are connected
via a dedicated wired Ethernet link. Wireless Ethernet connects
both computers to the off-board computing resources. Should
additional on-board resources become necessary, we could
place laptops inside the cargo bays of the XR4000 mobile
base.

Fig. 7. UMan’s interior

C. Sensing

We view sensing as one of the most critical and under-
explored aspects in autonomous mobile manipulation. Conse-
quently, we are equipping UMan with a rich suite of sensors.

UMan can navigate in the environment using an onboard
SICK LMS200 laser range finder. The SICK’s field of view
is 180 degrees, with an angular resolution of 1 degree and
a distance resolution of 10mm with a range of 80m. A 180
degree scan of the environment can be completed 75 times per
second.

Visual input is received from a Sony XCD710CR color
camera mounted on the wrist. The camera has an IEEE-1394
(Firewire) interface, and was chosen for its superior image
quality. It can produce 30 frames per second at a resolution
of 1024 by 768 pixels, and has many features (i.e. partial
scans, various resolutions and color encodings). By controlling
the position and orientation of its arm, UMan can collect
visual data and generate 3D images far beyond the capabilities
of a simple stationary pan-tilt vision system. Despite the
complication in linking the vision system and the manipulator,
this combination is able to look behind obstructions in the field
of view and can easily generate multiple views of the same
object. In the future, more cameras will be installed to further
enhance UMan’s visual perception.

We plan to mount an additional laser range finder (Hokuyo’s
URG-04LX [9]) on UMan’s wrist. Hokuyo’s sensor is rel-

atively light (160g), compact (L50xW50xH70mm), and has
low power requirements (2.5W). Those characteristics make
it suitable to be carried on a robotic arm. Moreover, the
URG-04LX has a 240 degree field of view, and provides an
accuracy of 10mm with an angular resolution of 0.36 degrees.
Complementing our vision sensors with a movable laser range
finder will allow us to perform sensor fusion of complementary
information about the environment.

Tactile sensing is the heart of dexterous manipulation.
Unfortunately, robotic arms with inherent force compliance
are not commercially available. The lack of force compliance
makes the safe operation of the manipulator arm more difficult
and calls for a more complex control architecture. Manipulator
arms with inherent force compliance exist. However, since our
research focuses on algorithmic aspects, we rely on off-the-
shelf hardware and use two sets of force sensors in conjunction
with precise position feedback from the arm/hand to achieve
compliant control. The first set of sensors, mounted on the
fingertips of the Barrett hand, consists of three ATI Nano17 6-
axis force/torque sensors. The ATI Nano17 has a resolution of
1/160N, for forces varying between -12N to +12N. For torques
varying between -120Nmm to +120Nmm, it has a resolution
of 1/32Nmm. The second sensor, mounted on the wrist, is
an ATI Gamma 6-axis force/torque sensor. This sensor has
a resolution of 1/640N for forces varying between -32N to
+32N. For torques varying between -2.5Nm to +2.5Nm, it has
a resolution of 1/1000Nm.

UMan’s wireless network adapter (see Section III-B) al-
lows it to benefit from off-board sensing to complement its
onboard sensors. When operating in sensor-enabled environ-
ments, UMan can collect data from various external sources
and use it to increase its knowledge and understanding of the
environment in which it operates.

IV. MULTI-OBJECTIVE TASK-LEVEL CONTROL

Our research in autonomous mobile manipulation is primar-
ily concerned with interactions between UMan’s end-effector
and the environment. To facilitate this research, we chose
an end-effector-centric control framework. The operational
space framework for robot control [13] allows us to define
manipulation tasks in terms of end-effector motion and forces,
thus abstracting from the kinematics and dynamics of the
underlying robot mechanism. At the same time, it does not
prevent us from exploiting the mechanism’s kinematic and
dynamic characteristics through other methods of control to
achieve desired performance metrics. Moreover, this frame-
work allows treating several different parts of the mechanism
as end-effector, and prioritizing the tasks addressed by each
end-effector. In this section we describe the task-level control
scheme implemented on UMan and our method of combining
several behaviors to exploit UMan’s redundancy.

Task-level control [13] is a convenient and powerful method
of generating multi-objective behavior for robotic systems.
Rather than specifying joint trajectories, this framework
permits direct control of the manipulator’s end-effectors,
greatly facilitating programming for kinematically redundant



robots, such as UMan. Task-level control also permits the
task-consistent execution of subordinate behaviors, exploiting
nullspace projections. Given an end-effector task, expressed
as a force/torque vector Ftask acting on the end-effector, and
given an arbitrary subordinate behavior, expressed as a vector
of joint torques Γ0, we can determine the torque Γ to achieve
task and subordinate behavior as follows:

Γ = Jtask(q) FT
task + NT

task(q) Γ0, (1)

where NT
task represents a projection into the nullspace of the

end-effector Jacobian Jtask. This projection ensures that the
subordinate behavior will not alter task behavior, i.e., it will
result in task-consistent motion.

This principle of nullspace projections can be extended to
cascade an arbitrary number of hierarchical behaviors [18]. If
behavior i results in torque Γi, the torque

Γ = Γ1 +NT
1 (q)

(
Γ2 + NT

2 (q)
(
Γ3 + NT

3 (q) (. . .)
))

(2)

combines these behaviors in such a way that behavior i
does not affect behavior j if i > j. In equation 2, NT

i is
the nullspace projection associated with the task Jacobian of
behavior i. Here, we adopt the more compact notation of the
control basis [11] to describe such cascaded nullspaces. We
associate a control primitive φi with each torque Γi. If a
control primitive φi is executed in the nullspace of the control
primitive φj , we say that φi is performed subject to φj , written
as φi C φj . We can now rewrite equation 2 as

. . . C φ3 C φ2 C φ1 . (3)

This task-level framework with nullspace projections serves as
the underlying control scheme for UMan. Using this approach,
other research groups have already demonstrated sophisticated
multi-objective behavior on simulated humanoid robots [18].
Our research effort based on this control framework will
focus on the control primitives themselves as well as on their
automatic composition and sequencing to achieve robust, au-
tonomous manipulation behavior in unstructured and changing
environments.

V. GLOBAL PLANNING AND CONTROL OF ROBOT MOTION

The task-level control framework described in the previous
section is well-suited for the specification of task-based forces
and position constraints at the end-effector. However, in the
context of autonomous mobile manipulation, end-effector tasks
have to be performed in dynamic and unstructured environ-
ments. In such environments, obstacles can interfere with task
execution. The task-level control framework is thus not suf-
ficient to provide a complete abstraction for the end-effector.
In addition to the control-based framework described in the
previous section, our platform also has to include the ability
to perform globally task-consistent motion for manipulation
tasks, i.e., motion that fulfills the position and force constraints
imposed by the task as well as the global motion constraints
imposed by obstacles in the environment.

We have developed the elastic roadmap framework [27] to
augment the task-level control framework from Section IV

with the ability to perform globally task-consistent and
collision-free motion. The elastic roadmap framework trans-
lates global workspace connectivity information into a series
of potential functions. These potential functions collectively
represent an approximated navigation function for the robot’s
task. The navigation function in turn represents a global
motion plan that is capable of responding to feedback from the
environment. The motion plan integrates seamlessly with our
task-level control framework. By combining the global plan
with the control primitives that generate task-behavior, task
constraints as well as global obstacle avoidance constraints
can be maintained throughout the execution of a task, even in
unstructured and dynamic environments.

More detail about the elastic roadmap framework is pro-
vided in our RSS 2006 paper [27]. In Section VI-B, we show
the simulation results from that paper for motion generation
based on the elastic roadmap framework. We are currently
implementing the elastic roadmap framework on UMan and
plan to duplicate the simulation results on the real platform.
Moving from simulation to the real world introduces new
difficulties. Physical sensors, for once, are bound to be limited
and inaccurate. Consequently, addressing the integration is
an important aspect of motion generation in this application
domain.

The multi-objective control scheme described in Section IV
also facilitates the inclusion of readily available software for
mobile robot navigation. We choose to integrate the SLAM
package CARMEN [4], which can build a map of the robot’s
environment using laser scans, and can navigate the robot to
a desired position while avoiding obstacles [23], [22].

VI. PRELIMINARY RESULTS

A. Hardware Integration

One of the most important challenges in constructing an
experimental platform for autonomous mobile manipulation
is the integration of heterogeneous hardware and software
components [3]. In this section we describe UMan’s evolution
during the hardware integration phase.

UMan is constructed from off-the-shelf components. The
first major milestone for platform integration was the simul-
taneous real-time control of the XR4000 mobile base and the
Barrett WAM with the system running on battery power. For
this test, we had UMan follow a circular trajectory on the
floor while moving its arm through its range of motion. The
circular trajectory is performed by the base without changing
orientation, demonstrating its holonomic motion capabilities
(see http://www.cs.umass.edu/∼dubik for a video). We have
implemented joint space control and operational space control
at rates up to 1KHz. Operational space control will permit the
exploitation of the mechanisms kinematic redundancy using
multi-objective control based on nullspace composition (see
Section IV).

In the next step, we began the integration of the sensor suite
and in particular the linking of the robot arm with our vision
camera to perform visual servoing (see Figure 8). The camera
(mounted on the wrist) provides color images to a simple color



tracking algorithm. The algorithm requested arm movements
(and therefore camera movements) to center a blue ball on
the camera’s image plane. The control code was executed
in at high frequency on the real-time PC, while the vision
processing was executed at a much lower frequency on the
Linux-based PC. This simple test will be the basis of future
visual servoing tasks. As discussed in section IV, this task will
be performed in parallel with other tasks, by taking advantage
of UMan’s kinematic redundancy.

Fig. 8. Visual servoing: Sony XCD710CR camera mounted on UMan’s
wrist, UMan’s arm tracking the blue ball in an attempt to center it in the
image plane, the velocity vector commanded by the vision system

B. Elastic Roadmaps

The elastic roadmap framework has been implemented and
tested in simulation [27]. Here, we report only on the high-
level results to illustrate how the elastic roadmap framework
is capable of supporting our end-effector-centric view in the
context of autonomous mobile manipulation.

Most work in global motion planning only considers end-
effector placement tasks. These tasks are specified by an initial
and a final configuration for the entire manipulator. Constraints
that need to be maintained during the motion itself are rarely
considered. In our end-effector-centric view of autonomous
mobile manipulation, it oftentimes is sufficient to consider
only the end-effector placement, irrespective of the manip-
ulator configuration that achieves that placement. In addition,
a large number of tasks in autonomous mobile manipulation
require that end-effector constraints be maintained throughout
the entire motion. All of these requirements are met by the
elastic roadmap framework. In all three experiments shown in
Figure 9, the robot is performing a task that consists of end-
effector placement in conjunction with task-constraints that
need to be maintained throughout the placement motion. The
experiments show that the elastic roadmap framework is able
to achieve global real-time planning and replanning for our
mobile manipulation platform, even in dynamic environments.

VII. FUTURE RESEARCH

Autonomous mobile manipulation is a relatively young
discipline within robotics. It combines a wide variety of
research areas, ranging from force control to mechanism
design to computer vision. A workshop on autonomous mobile
manipulation brought together researchers from the field to
identify a roadmap for research in this area [3]. Here, we
briefly describe some of the areas where we will focus our
efforts.

A. Perception

Vision systems have been used to augment the abilities of
both manipulators and mobile platforms since their inception.
However, there are many fundamental capabilities which could
benefit dramatically from a bidirectional flow of information
between vision and manipulation, and which are still relatively
unexplored.

Visually analyzing the environment is a precondition for
successful manipulation. More surprising perhaps is the effect
that manipulation can have on visual perception. For example,
the difficulty of recognizing an object in computer vision often
stems from the pose, or specific orientation, of an object.
Moreover, specularities (illusions caused by highly reflective
surfaces) can fool an observer into misinterpreting the vi-
sual data. Generating more data about the scene by simple
manipulation (e.g., poking an object of interest, see [7]) can
dramatically improve the performance of the visual system.

The correlation between manipulation and visual perception
is striking. However, very little research has taken place on
the interaction between the two, probably because of the
rarity of having manipulation, mobility, and vision on the
same platform. We intend to endow UMan with manipula-
tion capabilities such as turning a light switch to effect the
lighting conditions, and moving objects around to gain new
perspective.

B. Manipulation

We plan to develop elementary manipulation skills to allow
UMan to interact with its environment in interesting ways.
One such skill is grasping. Grasping has traditionally been
performed by a rigorous analysis of grasp geometry [14]
or by haptically probing the grasped object until form/force
closure is reached [15]. However, many interesting objects
have been designed to be grasped by humans. We will develop
so-called “ballistic” or “optimistic” grasp controllers. These
controllers exploit visual clues obtained from object features
to instantiate various parameters of relatively low-feedback
grasping behavior. During the execution of such behavior,
visual and haptic feedback can be used to transition between
reaching and grasping behaviors, for example, or to detect
failure. Our grasp controllers are called optimistic, because
they assume that successful grasping behavior can be initiated
based on perceived object features. This stands in contrast with
approaches that employ elaborate analysis to ensure success.
Instead, these behaviors leverage relevant properties of objects
in the environment.

C. Tool Use

Tool use represents one of the hallmarks of human and
animal intelligence. Creating a robot that can use a known
tool, learn how to use new tools, and choose the best tool
for a given task is an important and challenging problem
in autonomous mobile manipulation [20]. We will develop
methods that enable UMan to extract kinematic models of
objects in the environment. These methods will rely on a multi-
modal stream of sensor information, including exploratory



Fig. 9. Globally task-consistent motion with the elastic roadmap framework. The task is specified solely in terms of end-effector behavior and the elastic
roadmap framework ensures that collisions are avoided and that task behavior is resumed, should it be interrupted by changes in the environment. In all of
the figures, lighter versions of the robot represent milestones of the elastic roadmap that are part of the current solution paths. The connectivity of these
milestones is indicated by a dashed line. The darker robots represent the actual robot in motion. The direction of motion of obstacles is indicated by arrows.
Experiment 1: Images 1a) and 1e) show two perspectives of the same scene. The robot follows the line with its end-effector, while moving obstacles invalidate
the solution. The elastic roadmap framework repeatedly generates global, task-consistent motion plans until the robot reaches the goal. Experiment 2: The
task consists of following an object moving on an unknown trajectory. The following task is achieved based on force control. Moving obstacles force the
robot to suspend the force control task, loosing contact with the object. The elastic roadmap framework computes a path to re-attain the force control task,
shown in image 2c). This image also shows the trajectory taken by the object and its projection onto the floor. Experiment 3: A stationary robot, operating
under a moving truss, reaches for a goal location while maintaining a constant orientation with its end-effector. The sequence of images shows how the goal
can be reached. Continued motion by the truss will repeatedly force the robot to move away from the goal location to avoid collision. The elastic roadmap
framework repeatedly generates motions such as those shown in images 3a)–3c) to re-attain the goal location.



behavior based on force-compliant motion primitives. The
ability to obtain a kinematic and dynamic model of objects in
the environment, we believe, represents one of the necessary
preconditions for learning the function of tools and objects,
learning how to use them, and learning how objects and tools
can be employed in new situations.

Initially, we intend to employ the basic gasping skills
described in the previous section, together with exploratory
behavior, to obtain the kinematic models of a variety of door
handles from UMan’s multi-modal sensor stream. We regard
door handles as a very simple type of tool, since it only
possesses a single degree of freedom (in most cases) and
is affixed to the environment. We hope to generalize these
methods to other tools and objects, such as pliers, drawers,
doors, latches, lids, and later to more complicated mechanisms,
such as those found in mechanical vises.

VIII. CONCLUSION

Autonomous mobile manipulation in many ways can be
viewed as a ”Grand Challenge” for robotics and related
disciplines. The successful deployment of autonomous robots
to perform complex manipulation tasks in unstructured envi-
ronments will not only require significant advances in a variety
of areas of robotics and computer vision, it will also require
that these new technologies be integrated into a single, robust,
and autonomous robotic platform. In this paper, we described
our efforts towards building such a mobile manipulation
platform. Our mobile manipulator, UMan, was designed to
support research in autonomous mobile manipulation. We have
combined a number of off-the-shelf components to construct
a hardware platform with redundant kinematic degrees of
freedom, a comprehensive sensor suite, and significant end-
effector capabilities for manipulation.

We believe that autonomous mobile manipulation requires
tight integration of a broad range of capabilities and skills.
Thus, our efforts to provide a comprehensive software platform
that enables competent, robust, and autonomous task execution
on our mobile manipulator. This software suite includes the
elastic roadmap approach, an efficient approach to globally
task-consistent motion that combines multi-objective, task-
level control with real-time computation of global motion
plans. We reported on our efforts to integrate one of the freely
available software packages for mobile robot mapping and
navigation with our multi-objective, task-level control scheme.
In addition, we described our initial attempts to develop
perceptual capabilities that are tailored to the requirements
of autonomous mobile manipulation. Finally, we gave an
overview of planned research activities to be supported by
our combined hardware and software platform UMan.
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