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Abstract

Object detection and recognition systems, such as face
detectors and face recognizers, are often trained separately
and operated in a feed-forward fashion. Selecting a small
number of features for these tasks is important to prevent
over-fitting and reduce computation. However, when a sys-
tem has such related or sequential tasks, selecting features
for these tasks independently may not be optimal. We pro-
pose a framework for choosing features to be shared be-
tween object detection and recognition tasks. The result is
a system that achieves better performance by joint training
and is faster because some features for identification have
already been computed for detection. We demonstrate with
experiments in text detection and character recognition for
images of scenes.

1. Introduction

Many real-world problems must solve multiple classifi-
cation tasks simultaneously or have tasks that are organized
hierarchically or sequentially. For example, a vision sys-
tem may need to discriminate between cars, people, text,
and background as generic classes, while also recognizing
particular cars, people, and letters. We shall define the de-
tection task as determining whether an image region corre-
sponds to an object from a class of interest (e.g., characters)
or not. The recognition task is defined as discriminating
among members of that class (e.g., if this is a character, is it
a p or a q?). Often the detection and recognition tasks are
treated in a hierarchical or sequential manner by first run-
ning a detector and then feeding detections into an appro-
priate recognizer. This work seeks to knit these processes
more tightly by considering them jointly.

Constructing a classifier for a task involves many issues,

Figure 1. The detection task must only discriminate characters
(top) from background patches (bottom), while the recognition
task must identify the centered character.

including ascertaining the quality and necessary quantity of
any training data and deciding which features or observa-
tions are relevant to the decision making process. Two rea-
sons for limiting the number of features involved in clas-
sification include preventing over-fitting and reducing the
amount of computation needed to reach a decision. Models
with too many features irrelevant to a classification task are
prone to poor generalization performance since they are fit
to unnecessary constraints. Even when a problem with over-
fitting is not manifest, if certain features are redundant or
unnecessary for reaching a decision, the classification pro-
cess can be expedited by eliminating the need to compute
them.

Feature selection may be important for both detection
and recognition, the primary difference being the generality
of the classification tasks. However, if these problems are
treated in isolation, we may not achieve a feature selection
that is optimal—in computational or accuracy terms—for
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the joint detection-recognition problem.
We propose a framework for jointly considering the

more generic object class detection and more specific ob-
ject recognition tasks when selecting features. While some
features will undoubtedly be useful primarily for detecting
object classes and others will have the greatest utility for
recognizing objects in a particular class, there may be some
features with utility for both tasks. When this is the case, a
method accounting for overlap in utility may have two ad-
vantages. First, a feature useful for object recognition may
boost detection rates for the class by incorporating more
object-specific information in the search. Second, if such
dual-use features have already been computed for the pur-
poses of detection, they may subsequently be utilized for
recognition, effectively reducing the amount of computa-
tion necessary to make a classification.

2. Related Work

Several general frameworks exist for selecting features.
The two most basic are greedy forward and backward
schemes. Forward schemes incrementally add features to
a model based on some criterion of feature utility. Exam-
ples of this include work by Viola and Jones [16], who use
single-feature decision stumps as weak learners in a boost-
ing framework and add features with the lowest weighted
error to the ensemble. A similar forward method by Berger
et al. [2] involves adding only those candidates that most
increase the likelihood of a probabilistic model. Back-
ward schemes, by contrast, selectively prune features from
a model. The Laplacian (`1) prior for neural networks, max-
imum entropy models, logistic regression, etc. [17] belongs
to this category. In this scheme, features are effectively
eliminated from a model during training by fixing their cor-
responding weights to zero. Many other variants for select-
ing a subset of features are possible; see Blum and Langley
[3] for a more thorough review.

Feature selection for object detection and recognition
schemes generally involve one of a few variants. The Viola-
Jones object detector [16] employs outputs of simple image
difference features, which are similar to wavelets. There are
many possible filters, only some of which are discrimina-
tive, so a selection process is required primarily for compu-
tational efficiency. Other methods use image fragments or
patches as feature descriptors. These patches may be taken
directly from the image [15, 1], or an intermediate wavelet-
based representation [11]. These high-dimensional features
can be densely sampled and vector quantized to create a dis-
crete codebook representation. Winn et al. [18] iteratively
merge code words that do not contribute to discrimination.
Alternately, LeCun et al. [7] learn (rather than select for)
a discriminative intermediate feature representation. These
models are related to the Fukushima’s Neocognitron [6], a
model with hierarchical processing for invariant recognition
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Figure 2. An example object class hierarchy for images. Object
class detection is finding instances in the second column, while
recognition is identifying instances in the third column.

based on successive stages of local template matching and
spatial pooling.

Torralba et al. [14] have shown that jointly selecting fea-
tures for detecting several object classes generalizes better
and reduces the requisite the number of features. Our work
synthesizes many of these ideas, adding the object recogni-
tion task to the competition for feature resources.

3. Detection and Recognition Model

Our underlying classification and feature selection
scheme is probabilistic. Given an observation vector the
goal is to determine whether it belongs to some general
class of interest, and if so, to recognize it as a particular
known object. Let x represent the input vector and y ∈ Y
the associated label. In the simplest case, there is one class
of interest to detect (e.g., characters), so the label space
is partitioned into labels from that object class and “back-
ground,” Y = Yc ∪ {b}. This generalizes easily to multiple
classes (See Figure 2).

We use a discriminative maximum entropy model [2] for
classification:

p (y | x;θ, F ) ≡
1

Z
exp (θ (y) · F (x)) , y ∈ Y, (1)

where F is a vector of features calculated on the input
observation x, parameters θ are class-specific weights on
these features, Z is a normalizing constant ensuring the ex-
pression is a proper probability. Given a labeled set of in-
dependent examples D =

{(
y(i),x(i)

)}
i
, the parameters

of the model may be optimized by a maximum a posteriori
(MAP) estimate. The corresponding objective function

L (θ;F,D) ≡ log p (θ | α)+
∑

i

θ

(
y(i)

)
·F

(
x

(i)
)
−log Z

(2)
is convex when the prior on the model parameters p (θ | α)
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is convex. Thus a global maximum θ̂ can be found via con-
vex optimization.

Two separate classification mechanisms are often used
for detection and recognition problems. Formally, this
means first optimizing a detection model with parameters
θD where the label w ∈ {c, b} is either the generic char-
acter class c or background b. Then, given a detection of
some class, (w = c ⇒ y ∈ Yc) a query is made to a recog-
nition model for that class with parameters θR to assign a
character label y ∈ Yc. Model (1) discriminates among all
character labels and backgrounds simultaneously. Alterna-
tively, the probability may be factorized by introducing the
detection variable w:

p (w, y | x;θ, F ) ≡ p (w | x;θD, FD) p (y | w,x;θR, FR) ,

(3)
where w ∈ {c, b}, y ∈ Y and the joint model parameters θ

and features F are the result of concatenating the detection
and recognition models’ parameters and features. The first
term is the probability for detection, while the second term,
conditioned on the detection result, is the probability for
recognition. The value of y determines w. Thus, logical
implication dictates the probability for y = b is unity when
w = b, and zero for all other y. Conversely, the probability
for y = b is zero and when w = c.

Detection and recognition models may be trained in one
of three fashions. An integrated model like (1) may be
trained. The model may be factorized like (3) and trained
jointly. In this case, the objective function would have the
form

LJ (θ;F,D) = L (θD;FD,D) + L (θR;FR,D) (4)

Finally, the detection and recognition components of the
factorized model may be trained independently. The wealth
of literature focusing strictly on detection or recognition
schemes indicates this is the most common approach.

One disadvantage of the factorized independent scheme
is that there may be intra-class variations that are hard to
capture with a generic detector for some object classes; al-
lowing explicit consideration of individual known objects
at the detection stage could ameliorate the issue. Addition-
ally, if detector training is independent of the identification
problem, and vice-versa, the features used to make a de-
tection decision may not overlap with the features used for
identification, possibly increasing the total amount of com-
putation. In the next section, we elaborate on our proposed
method for joint training and feature selection.

4. Feature Selection

Our algorithm for selecting features follows that of
Berger et al. [2]. It is a greedy forward method that in-
crementally adds the feature providing the greatest increase

in the objective function (2). A set of candidate features
G (x) are proposed with corresponding parameters α. Con-
catenating these features and parameters with the original
model’s F and θ, yields the model

p (y | x;θ′, F ′) =
1

Z
exp (θ (y) · F (x) + α (y) · G (x)) ,

(5)
where F ′ =

[
F G

]
and θ

′ =
[

θ α
]
.

The the gain of the features is assessed with the optimal
parameter values for the model with new features

G (G;D) = L
(
θ̂′;F ′,D

)
− L

(
θ̂;F,D

)
. (6)

This is equivalent to a likelihood-ratio test of the two mod-

els
(
F, θ̂

)
and

(
F ′, θ̂′

)
. Thus, a model is built by itera-

tively adding the highest-gain feature until the increase in
log-likelihood is negligible or some maximum number of
features is reached.

Since many candidate features may need to be examined
at every iteration, approximations are helpful for speeding
the process. First, only the parameters α for the candidate
features G are optimized [2], leaving θ̂ fixed in the gain
calculation (6). This can greatly reduce the search space.
Second, we calculate the gains on a representative subset of
the training data, and then calculate the gains of only the top
features on the full data.

When two separate classifiers are trained in a pipelined
framework, the gain of a feature is only measured with re-
spect to a particular task, detection or recognition. How-
ever, the entire end-to-end task of detection and recognition
yields a different ranking of the features.

5. Text Detection and Recognition

Our goal is to detect and recognize text in unconstrained
images. Here we describe the image features we use and the
data used to evaluate the method.

5.1. Features

Several authors have demonstrated that edges and textu-
ral features are useful for text detection [5, 4, 19, 13]. Most
of these systems do a preliminary layout analysis, and then
pass the detection regions to commercial recognition sys-
tems. However, Chen et al. [4] and Thillou et al. [13]
describe character isolation strategies and employ their own
character classifiers (a Fisher linear discriminant and neural
network, respectively).

Our features are mainly derived from the steerable pyra-
mid wavelet basis [12], which roughly models the “simple
cells” in an initial layer of processing in mammalian visual
systems. The wavelet coefficients are complex, represent-
ing outputs from even and odd paired filters. Taking com-
plex magnitudes yields phase invariant responses, similar to
complex cells in biological systems.
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Figure 3. Patch feature map computation. There is a normalization
and downsampling between w and t, and another dilation between
t and f .

One pool of features intended primarily to facilitate text
detection are a set of image and wavelet statistics origi-
nally crafted for texture synthesis [9]. These include im-
age statistics (four central moments plus min and max) at
several scales, means of wavelet channel magnitudes, and
local auto- and cross-correlation of wavelet channels. Al-
though originally intended to be computed globally over an
image of ergodic texture, we compute them locally over a
small image region, which may be efficiently achieved by
convolution.

Chen et al. [4] train a subsequent character classifier di-
rectly on the local wavelet features. However, such a model
may not be robust to image deformations. Indeed, research
in cognitive psychology by Rehling [10] indicates that two
mechanisms operate in human character recognition: an ini-
tial “flat” recognizer like Chen’s that is fast, and a secondary
hierarchical parts-based model like LeCun’s convolutional
network [7] that is slower but more accurate. Following
this hierarchical framework, we add template features to the
candidate pool.

First, the wavelet magnitudes are locally normalized by
a process similar to that of SIFT descriptors [8]. At each
location, all the wavelet magnitudes in a local window are
normalized to a unit `2 norm, clipped at a threshold (0.2 in
our experiments), and re-normalized, keeping the normal-
ized values of the center location. To decrease spatial and
phase sensitivity, the image’s wavelet magnitudes are down-
sized by taking the maximum over a small window within
each channel (a simple morphological dilation). Template
features t are small patches extracted from these subsam-
pled wavelet magnitudes and subsequently normalized to
have zero mean and unit `1 norm.

Feature maps are computed from these templates by
convolving the image’s normalized, downsampled wavelet
band magnitudes w with the corresponding channels from
the template t and summing the output over all channels
c. Let tc represent the normalized wavelet coefficient mag-
nitudes of some channel (e.g., scale and orientation) c for

Figure 4. Sample patch template and feature map outputs.

a template, then the corresponding feature map calculation
for an image x having wavelet coefficient magnitudes w

(normalized and downsampled) is

ft (x) =
∑

c

t
c ∗ w

c (7)

where ∗ is the convolution operator. The feature map ft

is then subject to another downsampling operation for even
further spatial pooling and dimensionality reduction. An il-
lustration of the image to feature map calculation is given
in Figure 3. Resulting template feature map outputs (Figure
4) may be transformed to a vector and added to the classifi-
cation model (1) as entries in F (x). The goal will then be
to select the templates most useful for a particular task, be
it detection, identification, or both.

6. Experiments

In this section, we compare three training and feature
selection strategies for detection and recognition: the joint,
integrated all-way classifier, a factored but jointly trained
classifier, and independently trained classifiers.

6.1. Data

To test our hypothesis that joint feature selection can
improve speed and accuracy, we need data with labels for
background and characters. A set of 300 images taken
from scenes around a downtown area have had text regions
masked, and square patches of various scales from the non-
text regions are extracted and labeled as background. Ex-
amples are in the bottom of Figure 1.

Rather than manually crop and label individual charac-
ters from actual image regions, we generate similar syn-
thetic character images. There are 62 characters (26 upper
case, 26 lower case, 10 digits) in our alphabet to be rec-
ognized Yc. The characters were rendered in 954 fonts at a
pixel height of 25 (roughly 12.5px x-height) and centered in
a 32x32 pixel window. Neighboring characters were sam-
pled from bigrams learned on a corpus of English text and
placed with uniform random kerning. The trigram image
was then subject to a random distortion involving contrast,
brightness, polarity, scale, shear, and rotation, followed by
zero-mean Gaussian noise. The degree of noise and dis-
tortions are modelled after the text from our scene images.
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Figure 5. Synthetic character images used for experiments.

Adding these factors to the data set allows the classifier to
learn them and provides a reasonable test bed without hav-
ing to manually ground truth individual characters in many
images. The label of these character windows is the center
character. Examples characters are shown in Figure 5, and
may be compared to characters from actual images of scene
text in Figure 1. Note that the recognition task involves no
character segmentation—the character in the center of the
window must be recognized in the presence of neighboring
character “clutter.”

For the non-sign background class, our training set con-
sists of roughly 65,000 windows at multiple scales from
77 images of outdoor scenes. The foreground character
class consists of nearly 30,000 character windows (each of
62 characters in 467 fonts). Since text is actually rarer in
natural scenes, we weight all the data instances in training
and test evaluation such that characters have a class prior
of 1e − 4; in other words, the ratio of text to background
is almost one to ten-thousand. The test set is roughly the
same size but comes from a different set of scene images
and fonts. (Indeed, if we use the same fonts for testing even
with different distortions applied, the recognition results are
much higher.)

As shown in Figure 3, the wavelet transform of a given
32 × 32 patch is downsized to 16 × 16 and the resulting
feature map is downsized to 4 × 4 for a very compact rep-
resentation of responses for each feature.

In all cases, a Laplacian prior p (θ | α) ∝
exp (−α ‖θ‖1) was used, and the value of the hyper-
parameter α was chosen by cross-validation. The training
set was split in two, half was used for training, and the
value of α that yielded the highest likelihood on the the
other half was then used on the entire training set. All of
the features were included for cross-validation, since we
do not a priori know which might be useful. However,
a slightly smaller portion of the training data was used
since all features for all instances exceeded memory limits.
Since less training data is available, this likely results in
a stronger prior than necessary. Conversely, only a few
features are actually used in the initial training stages, so a
strong prior may be of some value.
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Figure 6. Comparison of feature selection strategies. See text for
details. (Note: This figure is best viewed in color.)

6.2. Results

In this section, we present the results of our experiments.
Section 6.3 contains an analysis and discussion of these re-
sults in greater detail.

Figure 6 shows the comparative results of the feature se-
lection strategies. Character accuracy is the accuracy on
all test character instances—to positively contribute, an in-
stance must not only be detected as text but also be correctly
identified. Character detection curves are qualitatively simi-
lar between the three methods, but are much higher since an
instance must only be classified as some character to be cor-
rect. The false positive rate is given for the relative weight-
ing of the instances described above, though the actual num-
bers are quite small: each “row” of pluses constitutes one
absolute false positive, so that the most for the independent
method is three, while the joint method yields sixteen at its
peak.

The independent method has lower character accuracies,
but also a lower false positive rate. Therefore, we need
a single measure that accounts for the detection rate/false
positive trade-off and incorporates accuracy. The informa-
tion retrieval community encounters the same issue with the
precision and recall metrics, unifying them in the so-called
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Figure 8. Optimal allotment of detection and recognition features
versus total number of features with independent subtask selec-
tion. For total features greater than 12, the space of possible al-
lotments is sub-sampled; bars show the fractions tested that are
nearest to the optimal.

“F -measure,” which is their harmonic mean. Unlike the
arithmetic mean, the harmonic mean is much more sensi-
tive to differences between the values being averaged and
will hew closer to the “outliers.” This can more accurately
reflect poor performance along a particular dimension by
preventing it from being averaged out. To unify the charac-
ter accuracy and false positive rate in our system, we pro-
pose to use the harmonic mean of character accuracy and
the true negative rate (or, one minus the false positive rate).
In an ROC curve, this is a type of outlier-sensitive distance
measure from a particular point on the curve (given by the
classifier), to the upper-left corner of the unit cube, which
an optimal ROC curve would pass through.

Figure 7 compares the gains of some features under the
different selection strategies during a round of feature se-
lection. In each graph, five features for a particular task
are uniformly sampled from best to worst, and the gains of
these features under all the tasks is shown. To normalize the
gains for comparison, each is divided by the maximum gain
in the round for its particular selection strategy.

Given a fixed total number of features, we calculate
the number of features alloted to detection and recognition
tasks (according to their independent feature selections) that
results in an optimal G-measure, as shown in the top of Fig-
ure 8. Figure 9 shows the relative improvement

R = 1 −
1 − GJ

1 − GI

(8)

(or reduction in “error”) between the G-measure of the joint
selection GJ and the optimal independent selection GI.

We may also take a cascaded approach to detection and
recognition. The independently trained classifiers operate
in a sequential fashion—first detection, then recognition—
while the joint model evaluates the entire hypothesis space.
We iteratively compute features until the posterior entropy
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Figure 9. Relative improvement (see Eq. 8) of joint feature se-
lection over independent feature selection given optimal feature
allotment.
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Figure 10. Comparison of feature selection strategies for cascaded
classification.

of the task at hand (detection, recognition, or both in the
case of the joint model) decreases to some pre-specified
fraction of the initial entropy, at which point the classifi-
cation is accepted. For instance, with no features the initial
entropy is a function of the number of classes in the task:

H0
D

= − log 2

H0
R = − log 62

H0
J = − log 63. (9)

When we add the top k features to the model, the probability
distribution changes, yielding a new entropy Hk. We thus
add the top features until

Hk

H0
< τ (10)

The independent classifiers do this sequentially, first for the
detection task using HD, the posterior entropy of w), then,
if necessary, fixing w and using HR, the posterior entropy
of y. Figure 10 shows the sum of k on the entire test set
while varying thresholds τ for both the joint and indepen-
dent models.
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6.3. Discussion

Our experimental results demonstrate the superiority
of joint feature selection over the traditional independent
methods in several ways. The first and most obvious way
is that the G-measure of joint method dominates the inde-
pendent method for any number of features. This is shown
by the consistent 13-50% error reduction in Figure 9. Even
if the relative improvement was more modest, the problem
of determining the optimal allotment of features to the de-
tection and recognition task would remain. If the purpose
of feature selection is to minimize the amount of necessary
computation, one must figure into the calculation how many
features to use. The problem with the independent method
is given a feature bandwidth a priori, the feature allotments
will undoubtedly depend on the task. To determine the num-
ber of features that should be used for detection would re-
quire an additional level of optimization to find the maxi-
mum shown in Figure 8.

One of the interesting properties of the joint method’s
performance is the great improvement over the independent
method when there are fewer features available; the joint
feature selection strategy ramps up much more quickly. The
reason for this can be seen by examining the gains shown in
Figure 7. In this round, the top feature selected for the de-
tection task has almost no value for recognition. With this
strategy, by the time a character is detected, the features that
have been computed will be of little help in actually identi-
fying the character. By contrast, the top feature for the joint
task has modest value for both detection and recognition.
Adding this feature to the classifier not only aids in detect-
ing characters, but very early on the system is also able to
identify many more characters as well.

The typical approach to detection and recognition is se-

quential. Under such a strategy, the independent detector
selects 20 features before the model likelihood plateaus,
while the independent recognizer selects 35 features. For
any window detected as text, the detector will have calcu-
lated 20 features, and then an additional 35 features will
be calculated for recognition. Since the prior probability
for text is very small, the total additional computation is
modest. However, as the number of object classes grows
(as in Figure 2), the requisite number of queries to the
class-specific recognizers gets much larger, and the impact
of additional feature computation for recognition becomes
non-negligible. For multiclass detection and recognition
schemes to be feasible, the features learned or selected must
consider the task in its entirety. Figure 10 demonstrates that
even for a cascaded approach to classification, the joint fea-
ture selection strategy requires the computation far fewer
feature maps for equivalent performance.

7. Conclusions

The typical approach to image understanding involves
training system components individually. Unfortunately, er-
rors propagating through sequential systems can have com-
pounded negative effects. Furthermore, if resources (e.g.,
features) can be shared among the components, training
components independently will make their resources too
specialized to be useful for any other task. Therefore, we
have proposed to extend the idea of shared feature selection
to the the task of object class detection and a more specific
object recognition.

We have laid out three frameworks for feature
selection—the usual, which selects features independently
for the detection and recognition task, and two others that
jointly select features for the entire detection and recogni-
tion task, one being factorized. Our results show that con-
sideration of the entire end-to-end task yields greater ac-
curacy. In a system with limited computational resources,
joint feature selection obviates the need to optimize feature
allocation for different tasks.

In more general systems, there will be many detection
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and recognition tasks. The benefit of multi-purpose dis-
criminative features for these systems will be even larger
than demonstrated here. With more complex object classes
to detect, knowledge of individual members can help boost
detection rates, and having features that are useful for mul-
tiple tasks can greatly reduce the necessary amount of com-
putation.

While recent research has focused on developing high
accuracy, specialized systems for tasks such as face detec-
tion, our results indicate it may be time to consider return-
ing to frameworks that allow joint training of these powerful
new models on broader, end-to-end tasks.
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