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Abstract

We address the problem of identifying specific instances of a class (cars)
from a set of images all belonging to that class. Although we cannot build
a model for any particular instance of the class (as we may be provided
with only one “training” example of it), we can use information extracted
from observing other members of the class. We pose this task as a learn-
ing problem, in which the learner is given image pairs, labeled as match-
ing or not, and must discover which image features are most consistent
for matching instances and discriminative for mismatches. We explore
a patch based representation, where we model the distributions of com-
parison metrics defined on the patches. Finally, we describe an on-line
algorithm that selects the most salient patches based on a mutual infor-
mation criterion that achieves good performance while only matching a
few patches.

1 Introduction

Figure 1 shows six cars: the two leftmost cars were captured by one camera; the right four
cars were seen later by another camera from a different angle. The goal is to determine
which images, if any, show the same vehicle. We call this task visual identification. Most
existing identification systems are aimed at biometric applications such as identifying fin-
gerprints or faces. While object recognition is used loosely for several problems (including
this one), we differentiate visual identification, where the challenge is distinguishing be-
tween visually similar objects of one category (e.g. faces, cars), and categorization where
the algorithm must group together objects that belong to the same category but may be vi-

Figure 1: The Identification Problem: Which of these cars are the same? The two cars on the
left, photographed from camera 1, also drive past camera 2. Which of the four images on the right,
taken by camera 2, match the cars on the left? Solving this problem will enable applications such as
wide area tracking of cars with a sparse set of cameras [2, §].



Figure 2: Detecting and warping car images into alignment: Our identification algorithm assumes
that a detection process has found members of the class and approximately aligned them to a canon-
ical view. For our data set, detection is performed by a blob tracker. A projective warp to align the
sides is computed by calibrating the pose of the camera to the road and finding the wheels of the
vehicle. Note that this is only a rough approximation (the two warped images, center and right, are
far from perfectly aligned) that helps to simplify our patch descriptors and positional bookkeeping.

sually diverse[12, 10, 4, 1].' Identification is also distinct from “object localization,” where
the goal is locating a specific object in scenes in which distractors have little similarity to
the target object [, 7].

As Figure 1 demonstrates, cars may differ in subtle ways that are dwarfed by appearance
changes due to viewing angles and illumination. In such a setting, which image features
are informative and which are not? Most previous work in this area uses class-specific
features that are hand-selected for the task, such as the distance between the eyes for face
identification[9]. Here we present an identification framework that attempts to be more
general. The core idea is that while we can not build a model for any particular instance (as
we may have only one image of it), we can use information extracted from observing other
members of the same class. We pose this task as a learning problem, in which the learner
is given image pairs, labeled as matching or not, and must discover which image features
are most consistent for matching instances and discriminative for mismatches. In testing,
novel image pairs must be classified as matched or mismatched.

Our approach learns which features of one image, when compared to the other image, are
likely to be informative. A feature is rated by its log likelihood ratio for matching and non-
matching pairs, where the likelihoods are conditioned on properties of the feature, such as
aspects of its position and appearance. We call these properties hyper-features.

The paper is organized as follows. In Section 2, we describe our decision framework in-
cluding the decomposition of an image pair into bi-patches, which give local indications
of match or mismatch. In Section 3, we introduce the appearance distance between the
two halves as a discriminative statistic of bi-patches. This model is then refined by con-
ditioning the distance distributions on hyper-features such as the patch location, showing
improved results. In Section 4, we introduce another comparison statistic, the difference in
patch position between images. We extend this positional model to incorporate one type of
statistical dependence between bi-patches. Finally, in Section 5, we show a straightforward
extension of our method for on-line use. We use a greedy algorithm to compare bi-patches
in order of decreasing mutual information with the match/mismatch variable. We show that
comparing a small number of well-chosen patches produces performance nearly as good as
using all of them.

2 The Decision Rule

We seek to determine whether two different images represent the same vehicle. Let C' de-
note whether two car images match, where C' = 1 is a match and C' = 0 a mismatch. Given
images I and I from two cameras (the “Left” and “Right” cameras), and assuming the
images are in approximate correspondence (see Figure 2), we pose this task as a decision
rule R, where we wish evaluate

R PC=1I51%) _ PUMIFC=1)P(C=1) _ 0
~ P(C=0|IL,1R) ~ P(IL,IR|C=0)P(C=0) ~ "

!There is evidence that this distinction exists in the human visual system. Some findings suggest
that the fusiform face area is specialized for identification of instances from familiar categories[11].



Figure 3: Patch Matching: The left image is sampled (red dots) by patches encoded as oriented
filter channels (for one patch, four channels are shown). Each patch is matched to the best point in the
other image by maximizing the appearance similarity between the patches. For each pair of patches
(bi-patch), the size and color of the matching circles indicates similarity in appearance. (Larger and
redder is more similar.)

The priors are assumed to be known.? ) is chosen to balance the cost of the two types of
decision errors, with A = 1 indicating they have the same cost. From here forward, for
mathematical convenience, we shall calculate R’ = R% rather than R. That is, we
convert the problem to a setting where the prior probability of a match and a mismatch are
equal, thus allowing us to drop the ratio of priors from subsequent equations. The same

decision rule is obtained by substituting \' = /\% for .

To model the likelihoods, we use an image decomposition into patches. In particular, the
left image I is broken into patches (F}, j € {1...m}). For each left patch F, we find the

most similar patch in the right image within some neighborhood around the expected loca-
tion given by the approximate alignment. We call the combination of a left and a matched

right patche (FJ-L ,FjR), together with their coordinates, a bi-patch, denoted F;. Thus
the posterior from Eq.( 1) will be approximated as P(C|IX, I®) ~ P(C|F,...,Fy) «
P(Fy,...,Fp|C)P(C).

For most of this paper, we will assume a naive Bayes model in which, conditioned on C,
the bi-patches are assumed to be independent. That is,

P(I*, IRC=1) P(FR,..Fn|C=1) ﬁ P(F;|C =1)

I
R = P(IL,IR|C =0) ~ P(F,..,F,|C=0)

)

In practice, we compute the log of this likelihood ratio, where each patch contributes an
additive term (denoted LLR; for patch ¢). Modeling the likelihoods in this ratio is the
central focus of this paper.

3 Modeling Appearance Differences

Rather than modeling bi-patch appearances directly, we compute the normalized correla-
tion between an encoding of the left and right image patches.> Thus we define

dj=1- CorrCoef(FjL, FJ-R) 3)
to be the “distance” in appearance between the two halves of a bi-patch F;.
3.1 Baseline Experiment

If we assume that d; contains all of the information from F}; about the probability of a
match, i.e. C and F are independent given d;, then P(C|F};) = P(C|d;). Thus, assuming

For our application, dynamic models of traffic flow can supply the prior on P(C).
*Each 252 pixel patch is encoded as four oriented filter channels half-wave rectified (where the
positive and negative components have been split) for a total of eight channels.



independent bi-patches (and skipping some algebra),
= 55— @
Jj=

In other words, this model assumes that the d;’s are i.i.d. samples from either the C' = 1 or
C = 0 distributions.

i&ecision vs. Recall for Appearance-Based Comparisons (d)

The two conditional distributions,
P(d;|C € {0,1}), are estimated
“non-parametrically” as normalized 08t
histograms from training data.*  For
each value of A, we evaluate Eq. (4) to
classify each test pair as matching or
not, producing a precision-recall curve.
Figure 4 compares this patch-based
model to a direct image comparison
method.> Notice that even this naive 5 ; \
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Figure 4: Identification using appearance dif-
ferences: The bottom curve shows the precision-
recall curve for non-patch based direct compari-
son of rectified images. (An ideal precision-recall
curve would reach the top right corner.) Notice
that all three patch based models outperform this
method. The three top curves show results for vari-
ous models of d; from Sections 3.1 (Baseline), 3.2
(Discrete), and 3.3 & 3.4 (Continuous). The re-
gression model outperforms the uniform one sig-
nificantly - it reduces the error in precision by
close to 50% for most values of recall below 90%.

Precision
o
o

©
~

The key observation of our approach is
that while the local information for con-
firming or rejecting a match concerns the
difference (in both position and appear-
ance) between the left and right patches,
the distributions of these differences may
depend strongly on the appearance or lo-
cation of just one of the patches. For
example, a large value of d; computed
from a bi-patch in the upper left corner
(which is often background) is less in-
formative than the same value near the
image center. This observation suggests
that we refine our distributions of d; by conditioning on additional variables such as posi-
tion. We call these conditioning variables hyper-features. We illustrate this idea by condi-
tioning d; on a simple binary variable Y} indicating whether the left patch is in the top or
bottom half of the image (see Discrete Hyper-Features curve in Figure 4). In this model,
R’ is now approximated as

P(C =1]d1, Y1, ey, Vi) _ ﬁ P(d;|Y;,C =1)P(Y;|C = 1) )
P(C=0d;, Ve, o, Vo) 1 P(;]7;,C = 0)P(V;[C = 0)
j=1 P(d]|Y},C = 0)7

where Eq. (6) follows from the independence of Y} and C.

“Data consisted of 175 pairs (88 training, 87 test pairs) of matching car images from two cameras
located on the same side of the street one block apart. Within training and testing sets, about 4000
pairs of mismatched cars were formed from non-corresponding images, one from each camera. All
comparisons were performed on grayscale (not color) images.

3The global image comparison method used here as a baseline technique uses normalized correla-
tion on a combination of intensity and filter channels, and attempts to overcome slight misalignment.



Figure 5: Fitting a gamma Distribution through p,o to the y-position: we demonstrate our
approach by fitting a gamma distribution, through the latent variables ® = (u, o), to the y posi-
tion of the patches. Here we allowed p and o to be a 3rd degree polynomial function of y (i.e.
Z= [y3, vy, 1]T). The center-left square shows, on each row, a distribution of d conditioned on
the y position of the left patch (F') for each bi-patch, for training data taken from matching vehicles.
The center-right square shows the same distributions for mismatched data. The height of histogram
distributions is color-coded, dark red indicating higher density. The central curve shows the poly-
nomial fit to the conditional means, while the outer curves show the ¢ range. For reference, we
include a partial image of a car whose y-coordinate is aligned with the center images. On the right,
we show two histogram plots, each corresponding to one row of the center images (a small range of
y corresponding to the black arrows). The resulting gamma distributions are superimposed on the
histograms, and seem to fit the data well.

3.3 Continuous Hyper-Features

The performance gain from this simple experiment suggests that we may be able to take
advantage of more complex relationships between properties of the bi-patches and the dis-
tributions over their inter-patch distances. The drawback of introducing additional hyper-
features is that the amount of training data available to estimate each conditional distribu-
tion is reduced. We mitigate this problem in two ways. First, we assume a parametric form
for each conditional distribution, modeling it as a gamma distribution (notated I'()) with
parameters § = {u, o }° (Figure 5). This gives each conditional distribution higher bias but
lower variance and is appropriate for sparse data conditions.

Second, rather than discretizing the hyper-features into bins and estimating € separately
for each bin, we couple these estimates through four unknown vector hyperparameters
a‘l‘, a‘é, af, and af, where the subscripts refer to the match/mismatch variable C'. These
hyperparameters are defined as sets of linear weights on the hyper-features and higher-order
polynomials of those. Let X = {X1, ..., X} } be a set of hyper-features, such as position,

contrast, and brightness. Let Z = [Z7, ..., Zl]T be a vector of various pre-chosen functions
of those hyper-features, like squares, cubes, cross terms, or simply copies of the variables
themselves. Then each bi-patch distance distribution has the form’

P(d|X15X27---an;C) = F(d) N(aéaz)a O'(OéUC,Z)) (7)
= T(d " Z, og" 7). (8)

That is, each distribution is a gamma distribution whose parameters are defined as a poly-

nomial function (i.e. a linear combination of powers) of the conditioning features.® This
coupling of distributions serves to control the capacity of our model and exploit relation-
ships between the conditional distributions of d to better estimate conditional distributions
from sparse data. These ideas are illustrated in Figure 5. The curves are estimated by max-
imizing the likelihood of the values of d in the training set. Note that the linear weights a*

can be fairly well approximated by a regression fit to d.’

®The moments can be converted to the natural parameters of the T', by v = (u/0)>, 8 = o*/p.

7 As neither p nor ¢ may be negative, our formula for both includes a minimum value (e.g. p =
max (o, @™ Z)) which, for clarity, we have left out of equations.

$One could interpret this as approximating P(d|X,C) = [ P(d|©)P(0|X,C)d© where we
have collapsed the integral down to a single maximum likelihood estimate of ©.

°In practice, we use this to initialize our ML optimization of c.



3.4 Automatic Selection of Hyper-Features

In this section we describe the automatic determination of Z, the vector of functions of
our conditioning variables. Recall that we assumed a linear relationship between Z and
w, o. This allows us to use standard feature selection techniques, such as Least Angle
Regression (LARS)[3], to choose a small subset of Z;s from a large number of candidates. '
Specifically, for the experiments reported here, we set X1, ..., X to be: (a) the x and y
positions of F'Z, (b) the intensity and contrast within F'* and the average intensity of the
entire vehicle, and (c) the average energy in each of the 8 oriented filter channels. LARS
was then asked to choose Z from these features in addition to their quadratic, cubic, and
cross terms. Once Z is set, we proceed as in Section 3.3.

Running an automatic feature selection technique on this large set of possible conditioning
features gives us a principled method of reducing the complexity of our model. Reducing
the complexity is important not only to speed up computation, but also to mitigate the risk
of overfitting to the training set. The top curve in Figure 4 shows results when Z includes
the first 10 features found by LARS. Even with such a naive set of features to choose from,
the performance of the system improves significantly.

4 Modeling Appearance and Position Differences

In the last section, we only considered the similarity of two matching patches that make up
a bi-patch in terms of the appearance of the patches (d;). Recall that for each left patch FE,

a matching right patch F]-R is found by searching for the most similar patch in some large
neighborhood around the expected location for the match. In this section, we show how to
model the change in position, r;, of the match relative to its expected location, and how
this, when combined with the appearance model, improves the matching performance. We
start with a model that is very similar to the model for d; and assumes that the alignment
is accurate. Section 4.2 addresses initial misalignment by introducing a global alignment
variable that is updated by the matches.

4.1 Change of Position

Let r; = (dxz;,dy;) be the difference in position |
between the coordinates of F}* and F* within the | -
standardized coordinate frames. Generally, we ex- _ i
pectr; ~ 0 if the two images portray the same ob- =

ject (C' = 1). The estimate for R’', incorporating | -

the information from both d and r becomes e

ﬁ P(rj|d;, X;,C =1)P(d;|X;,C = 1)
o1 F

-
-
-
-
-

e
-
-

,© | C=

rjld;, X;,C = 0)P(d;|X;,C = 0) e
Figure 6: Distribution of dy (y axis)

where X; is again a set of the hyper-features. lc.ondltloned on d (x axis). Superimposed

ines show o .

Here we focus on the first factor, where the distri-

bution of r; given C' is dependent on the appearance and position of the left patch (F]-L ,

through the hyper-features X ;) and on the similarity in appearance (d;). The intuition for

the dependence on d; is that for the C' = 1 case, we expect r; to be smaller on average

when a good appearance match (small d;) was found (Figure 6).

Following our approach for d;, we model the distribution of r; parametrically with a normal

distribution with mean 0, A'(0, o) , where o (we use a diagonal covariance) is a function of
X;,d;j. A parameterization of (X;,d;) is found through feature selection, while the weights

"In order to use LARS (or most other feature selection methods) “out of the box”, we use regres-
sion based on an L2 loss function. While this is not optimal for non-normal data, from experiments
we have verified that it is a reasonable approximation for the feature selection step.



08

e

o
@
<

Precision
o
-

s

Bx No Fit
Sy No Fit E
8x Attine Fit

Sy attine Fit
Appearance Only (d)
complete dxy.d)

0 02 04 08
Recall

Figure 7: Results: The LEFT plot shows precision vs. recall curves for models of r. The results for
dz and dy are shown separately (as there are often more horizontal than vertical features on cars, dy
is better). Re-estimating parameters of the global alignment, W (affine), significantly improves the
curves (middle 2 curves). Finally, performance is improved by combining position with appearance
(top curve) compared to using appearance alone (2nd from top). The CENTER pair of images show
a correct match, with the patch centers indicated by circles. The color of the circles in the top image
= MZ;, in bottom image = LLR ;. Our on-line algorithm (Section 5) chooses patches one at a time
based on CMZ. The top 10 “left” patches chosen are marked with arrows connecting them to the
corresponding “right” patches. Notice that these are well distributed in informative regions. The
RIGHT plot quantifies this observation: the curves show 3 different methods of choosing the order
of patches - random order, MZ, and CMZ. Notice that CMZ with 3 patches does as well as the
direct comparison method. All 3 methods converge above 50 patches.
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for the linear function are obtained by maximizing the likelihood of r; over the training
data. The bottom two curves in Figure 7 were generated using this method.

4.2 Dependence through Alignment

Until now we have assumed that, conditioned on C, bi-patches are independent (although
not identically distributed). While a full treatment of the issues related to dependence
within our framework is beyond the scope of this paper, here we briefly note one obvious
source of dependence and outline a method for dealing with it. The r;’s are all dependent
on the global alignment (W) of I and I'®: if W is two pixels off, all ;s are likely to be, on
average, two pixels off. This can be handled in a batch process by estimating a consensus
estimate of W (W) from all 7;’s. This produces an additive term to the distribution of
r;. For example, for the case when W is pure translation, P(r;|d;,X,C) = N(0,0;)) +
N(We,00) where og is the expected standard deviation of the estimated alignment W,.
More complicated models for W, such as affine, can also be supported.

Figure 7 shows that this method (with an affine model) significantly outperforms the ver-
sion where we assumed that the alignment was correct. While position seems to be less
informative than appearance, the complete model (Eq. 9) outperforms appearance alone.

S On-Line Image Feature Selection Using Mutual Information

Given a set of left, right training examples of other cars, how can we determine, by just
looking at the “left” image, which parts, when matched, are likely to be the most informa-
tive? It is natural to do this by computing the mutual information between d, the distance
in appearance between F]-L and FjR and C: MZ(C,d). Given the parametric distributions
of d, P(d|X,C = 1) and P(d|X,C = 0), as computed in the previous sections, it is
straightforward to evaluate MZ(d, C)).!!

This allows us to define an on-line algorithm, which matches patches one at a time, from
most informative to least, and stops as soon as a decision can be made. However, a problem
arises immediately with this algorithm: nearby patches tend to have similar M7 scores,
allowing neighboring patches to be picked successively. What this algorithm ignores is

"For computing MZ, we set P(C = 0) = P(C = 1) = 0.5. Similarly, we could also compute
and use MZ between C' and the joint distribution of d, 7.



the dependence of patches - once one patch in a region has been matched, nearby patches,
especially overlapping ones, will provide less information than a patch from a different
region. That is, CMZ(dy, C|d2), the mutual information of d; and C conditioned on an
already computed nearby match d» should be less than MZ(d;,C). For lack of space in
this paper, we assert without an algorithm that computing a reasonable estimate for CMZ
is possible, based on the proximity and similarity of F' and FF. The performance of this
patch selection method is compared to pure MZ-based sorting and to random selection of
the patches in Figure 7. To give a numerical indication of the performance, we note that
with only 10 patches, given a 1-to-87 forced choice problem, our CMZ-based algorithm
chooses correctly 93% of the time.

6 Conclusion

A different approach to a learning problem that is similar to ours can be found in [4],
which describes a method for learning object categories from very few training examples
of the class. They approach this problem by learning priors on the parameters of a fixed
generative model for the category where the training data consists of images from other
categories. We, on the other hand, abandon the notion of building a model with a fixed
form for an object from a single example. Instead, we take a discriminative approach and
model the statistical properties of image patch differences conditioned on properties of the
patch. These learned conditional distributions allow us to evaluate, for each feature, the
amount of information potentially gained by matching it to the other image.

Our framework is not specific to the features used here but can incorporate a wide variety
of feature types, including patch features of different encodings and sizes, as well as global
features such as the overall color of the object. By modeling the distributions of comparison
metrics on these features using the techniques described in this paper, and applying the
mutual information based feature selection, we can build, from a single example, a compact

representation in which the features are likely to have high saliency.'?
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12 Answer to Figure 1: top left matches bottom center; bottom left matches bottom right.



