
Cryptogram Decoding for Optical Character Recognition

Gary Huang, Erik Learned-Miller, Andrew McCallum

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

{ghuang, elm, mccallum@cs.umass.edu}

Abstract

Optical character recognition (OCR) systems for machine-printed documents typically re-
quire large numbers of font styles and character models to work well. When given a document
printed in an unseen font, the performance of those systems degrade even in the absence of
noise. In this paper, we perform OCR in an unsupervised fashion without using any character
models by using a cryptogram decoding algorithm. We present results on real and artificial
OCR data.

1 Introduction

Optical character recognition is the task of converting images of text into their editable textual
representations. Most OCR systems for machine print text need large collections of font styles and
canonical character representations, whereby the recognition process involves template matching
for the input character images. Such systems are font dependent and suffer in accuracy when
given documents printed in novel font styles. An alternative approach we examine here groups
together similar characters in the document and solves a cryptogram to assign labels to clusters of
characters. This method does not require any character models, so it is able to handle arbitrary
font styles. This approach subsumes the idea of adaptivity [31] in that it can take advantage of
patterns such as regularities in image distortions that are particular to each document. In addition,
the cryptogram decoding procedure is well-suited for performing OCR on images compressed using
token-based methods such as Djvu, Silx, and DigiPaper.

2 Related Work

Treating OCR as a cryptogram decoding problem dates back at least to papers by Nagy [30] and
Casey [6] in 1986. There continues to be research done to improve the performance of approaches
that use no character models, which are discussed here along with other related work.

In [15], Ho and Nagy develop an unsupervised OCR system that performs character clustering
followed by lexicon-based decoding. Their decoding procedure iteratively applies a set of modules
to progressively build up assignments based on comparing the “v/p” ratio against manually set
thresholds. One major difference between this work and [15] is our use of probabilistic reasoning
instead of a predefined ratio. In [23], Lee presents a more unified approach to decode substitution
ciphers by using Hidden Markov Models and the expectation maximization algorithm. That work
uses n-gram statistics as model priors, whereas ours uses entire word patterns. Breuel [2] introduced
a supervised OCR system that is font independent, but it does not take advantage of token-based
image compression.

Edwards and Forsyth [12] used a semi-Markov model and a small initial set of character templates
to perform OCR on handwritten Latin text. Their idea of inferring the identity of unseen characters
using a lexicon is similar to the initial stage of our decoding algorithm.

1

Lin and Knight [8] decipher the writing order of an ancient hieroglyphic script in a stepwise
fashion using n-gram statistics and the EM algorithm [11]. They evaluate the accuracy of their
system using known languages and obtained results that are drastically better than random ordering.
Our attempt at incorporating n-gram statistics for decoding is encouraged by their result.

Fang and Hull’s decoding system [13] focus on improving the recognition of ligatures and other
touching characters by using a combination of lexicon, font database, and n-gram statistics. The
system is shown to be robust to clustering mistakes and able to correctly decode most ligatures on
the two images used for testing.

3 The Model

In our approach, binary images of machine printed text are taken as inputs. Within the image,
each ink blot (i.e., connected component) is identified and an effort is made to identify characters
composed of multiple ink blots, such as those with accent symbols and the letters i and j. An
object defined in this manner can correspond to (1) exactly one character or punctuation mark, (2)
part of a character that is broken into several pieces due to noise, or (3) multiple characters such as
the ligatures fi and ffl. These objects are next clustered using greedy agglomerative clustering,
so that the input document is represented by a string of cluster assignments in place of the actual
characters. By examining the patterns of repetitions of cluster IDs and comparing them to the
patterns of dictionary words, we can decode the the mapping between cluster IDs and characters in
the output alphabet. In the rest of this section, we describe each step in detail.

3.1 Character Clustering

A crucial step in clustering is picking an appropriate similarity or distance measure. Two measures
that intuitively capture the distance between two binary images A and B are the Hamming distance
and the Hausdorff distance. The Hamming distance is simply the number of pixels on which A and
B differ. It is fast and easy to calculate, but it is not robust to noise. For example, two images
of the letter I may have larger Hamming distance than one of them to the letter T because of the
difference in the thickness of pen strokes. An alternative distance measure is the Hausdorff distance

[25, 34] defined as

h(A, B) = max
a∈A

min
b∈B

d(a, b),

where d is any metric, such as the Euclidean distance. In words, if the Hausdorff distance from A
to B is δ, then for every point a ∈ A, there is a point in B within distance δ as measured by d.

To reduce the effects of noisy pixels on the distance, we “soften” the Hausdorff distance such
that hp(A, B) = δ means that for at least p percent of the points a ∈ A, there is a point in B within
distance δ. Note that hp is asymmetric and so is not a proper metric, but we can define a symmetric
measure by using the mean of hp(A, B) and hp(B, A). In our experiments, we use this average with
p = 95 as the distance measure.

The Hausdorff measure is more robust than the Hamming measure, but is expensive to compute
for the O(n2) pairwise distances, where n is the number of images. One solution we use that takes
advantage of the speed of the Hamming distance and the robustness of Hausdorff distance is the
canopy method devised by McCallum et al [29]. First, the Hamming distance is computed for all
pairs of images, and two distance thresholds T1 and T2 are specified, where T1 > T2. Next, we go
through the list of images in any order and remove one image from the list to serve as the seed of
a new canopy. All images in the list within distance T1 of the seed image are placed into the new
canopy, and all images within distance T2 are removed from the list. This process is repeated until
the list is empty. The more expensive Hausdorff measure is then used for pairwise distances within
each canopy.

After all pairwise distances have been computed, the images are partitioned using hierarchi-
cal agglomerative clustering, a greedy bottom-up algorithm that gives a dendrogram: it starts

2

by assigning each image to its own cluster, then repeatedly combines the two clusters that are
most similar until all data points belong to a single cluster. We compute the similarity between
two clusters by the group average. I.e., the distance between clusters G1 and G2 is given by
d(G1, G2) = 1

|G1|·|G2|

∑

A∈G1

∑

B∈G2
h(A, B). To choose the final number of clusters, we use the

elbow criterion described in the experiments section.

3.2 Character Decoding

We start this section with some examples to demonstrate our idea. Consider the following string of
characters:

α β γ γ β γ γ β δ δ β,

where each Greek letter corresponds to an English alphabet letter. Given that the string stands
for an English word, which word is it? After some thought, it should be clear that it is the word
“Mississippi,” since no other English word has that particular pattern of letters.

For each word represented as a string of cluster assignments, we compute its numerization string

by going from left to right, assigning 1 to the first cluster ID, 2 to the second distinct cluster ID, 3
to the third distinct cluster ID, etc. For the above string, suppose the cluster assignments are

7 3 20 20 3 20 20 3 17 17 3,

then its corresponding numerization string is

1 2 3 3 2 3 3 2 4 4 2.

By computing the numerization strings for every word in the document and dictionary, we identify
code words in the document that map to a unique dictionary word or is shared by a small number
dictionary words. In this way, an initial mapping between cluster IDs and output characters can be
made.

Formally, let E = (e1, e2, ..., en) be the sequence of words encoded by cluster assignments, C =
{ci} be the set of cluster IDs, and Σ = {αj} be the alphabet of the target language. Our goal is to
compute the set of assignments that maximizes P ({ci = αj}|E). By considering one mapping at a
time, we write

P (ci = αj |E) =
P (E|ci = αj)P (ci = αj)

P (E)

∝ P (E|ci = αj)P (ci = αj)

∝ P (e1, e2, ..., en|ci = αj)

≈

n
∏

k=1

P (ek|ci = αj)

=

n
∏

k=1

P (ci = αj |ek)P (ek)

P (ci = αj)

∝
n

∏

k=1

P (ci = αj |ek),

where we have applied the naive Bayes assumption, used Bayes’ rule, and assumed a uniform prior
for P (ci = αj).

The quantity P (ci = αj |ek) is calculated by normalizing the count of the number of times cluster
ID ci maps to output letter αj among the dictionary words that have the same numerization string
as ek. We used Laplace smoothing with λ = 0.001 to avoid zero probabilities.

Once P (ci = αj |E) has been calculated for every ci and αj , each cluster ci is mapped to character
argmaxαj

P (ci = αj |E). Not all assignments will be correct at this point, because of words whose
numerization strings don’t have much discriminating power. We solve this problem by using the set
of mappings of which we are confident to infer the less confident ones.

3

3.3 Confidence Estimation

An intuitive way to measure the confidence of an assignment for ci is to look at the shape of the
distribution P (ci = ·|E). If it sharply peaks at αj and is near zero elsewhere, it indicates a confident
assignment; if it is uniformly distributed, then the assignment is equivocal. The measure of entropy

from information theory [33] quantifies this intuition. That is, for every cluster ID ci, we calculate
the entropy of its assignment by

H(ci) = −
∑

αj∈Σ

P (ci = αj |E) log(P (ci = αj |E)).

Sorting the entropies in ascending order gives a list of ci’s whose assignments are in decreasing
confidence. Recall that each code word ek is associated with a list of dictionary words Dk that have
the same numerization string. In general, some dictionary words in Dk are incompatible with the
mode of P (ci = ·|E). Our refinement strategy is to iterate the ci’s as sorted by entropy, assume the
mapping of ci = argmaxαj

P (ci = αj |E) to be true, and for each code word that contains ci, remove
from its list of dictionary words those words that are incompatible with the assumed assignment.
After each iteration, the assignment probabilities and entropies of unprocessed ci’s are recomputed
using the reduced lists of words.

To illustrate this algorithm, let’s continue with the example given above, and suppose later on in
the same document there is a code word 20 6 1 3 7 17. A priori, because there are many of English
words with the same numerization string (1 2 3 4 5 6), there is little hope of decoding the this word.
But since the word “Mississippi” has been decoded with high confidence, we can narrow down the
list of compatible words to “shrimp”, “scrimp”, and perhaps just a few others.

3.4 Identifying Ligatures and Partial Mappings

The decoding procedure described above assumes each cluster ID maps to one output character.
However, because some clusters contain ligatures and partial characters, additional steps are needed
to correctly identify those mappings. To (partially) deal with over-segmentation, prior to the decod-
ing steps described above, we count the number of of times each subsequence of cluster IDs appears
in the document. Next, the subsequences that contain only ci’s that appear in no other subsequences
are replaced by a single new cluster ID. To correct mapping errors that persist after the decoding
step, we considered two refinement strategies, one based on an n-gram character model, and another
on string edit distance. In both methods, the output alphabet is conceptually modified to Σ′ = Σ∗,
the set of strings made of zero or more letters from Σ.

3.4.1 N-gram Based Refinement

The first solution is based on a trigram character language model. That is, we compute the likelihood
of a string of characters w1w2...wm by

P (w1w2...wm|θ) =

m
∏

i=3

Pθ(wi|wi−2wi−1),

where θ is a table containing the trigram probabilities precomputed from some corpus in the same
language. In our experiments, θ is calculated from the Reuters news corpus 1.

Our use of an n-gram model is motivated by the intuition that the correct mapping between
clusters and output characters optimizes some measure of compatibility κ between the decoding and
θ, and that the search for the correct mapping can be guided stepwise by improving values of κ. As
widely practiced, we define κ to be the perplexity [27] of of the decoding W = w1w2...wm under the
trigram language model given by θ:

κ(W, θ) = 2−
1

|C|

P

m
i=3

log
2
(Pθ(wi|wi−2wi−1)),

1http://www.daviddlewis.com/resources/testcollections/reuters21578/

4

where |C| is the number of clusters. The perplexity can be thought of as the average size of the set
of characters from which each wi is chosen given wi−2wi−1, so a lower perplexity indicates a better
fit to the model.

Note that the factor 1/|C| is used instead of the usual 1/m because the length m of the decoding
changes along with the mapping. If the quantity 1/m were used, κ is minimized by mapping every
cluster ID to ε, the empty string.

Starting with the assignments A = (ci = αji
)
|C|
i=1 given by the numerization string algorithm, we

hope to obtain a lower value for κ by perturbing A one ci at a time. Stochastic algorithms such as
simulated annealing and Gibbs sampling [5, 18] can be used to search for better assignments, and it
is straightforward to efficiently update the posteriors as assignments change.

Unfortunately, our unsupervised approach to the problem is not amenable to such such iterative
refinements, because the ground truth text typically has higher perplexity than the decoding given by
the numerization string algorithm. This is due to the fact that ground truth text uses more character
types (upper case letters, digits, and punctuations) than the decoding given by A. Even when the
n-gram statistics are collected from a corpus containing only lowercase letters and the ground truth
text also contains only lowercase letters, we found this remains true. This may be caused by
the relatively short document lengths and domain specificity, where general n-gram statistics are
insufficient for decoding the cryptograms [14]. In our experiments section, we report only results
given by an alternative refinement strategy based on string edit distances.

3.4.2 String Edit Distance Based Refinement

We begin this section with a motivational example. Suppose we are given the partially decoded
words

?ost

fri?tens

enou?

where ? denotes the same cluster ID that needs to be deciphered. Recall that each cluster maps
to an element of Σ′, not necessarily to a single character. The first word alone does not give much
information, since it can be cost, post, and almost, among others. From the second and third
words, it becomes clear that the question mark stands for the letters gh. Essentially, this puzzle is
solved by a knowledge of the English lexicon and a mental search for words that are most similar to
those partial decodings.

The notion of similarity between two strings s = s1s2...sn and t = t1t2...tm can be measured by
the Levenshtein distance, which is the number of character insertions, deletions, and substitutions
required to make s and t identical [24]. Let ed(i, j) be the edit distance between s1...si and t1...tj ,
which can be computed recursively using dynamic programming:

ed(i, 0) = i

ed(0, j) = j

ed(i, j) = min







ed(i, j − 1) + 1
ed(i− 1, j) + 1
ed(i− 1, j − 1) + I(i 6= j)

where I(·) is an indicator function.
The first step in this strategy is to identify the set C̃ ⊂ C of clusters that are candidates for

correction. Our initial definition of C̃ is the set of cluster IDs appearing only in non-dictionary
words, but this criterion misses those clusters appearing in decoded words that happen to be in the
dictionary by accident. Instead, we define C̃ to be the set of clusters that occur more frequently
in non-dictionary words than in dictionary words, where frequency is measured by the normalized
character count.

5

aegean aluvic
bernoulli dlr
exxon fluoroscan
multilaterally zinn

Table 1: Some correctly deciphered non-dictionary words from the ASCII code data.

For every decoded word wi that contains an element of C̃, we find the dictionary word that
is closest to it in edit distance and tally the edit operations that involve elements of C̃. If wi

happens to be in the dictionary, we count the identity mappings that involve elements of C̃. To
avoid having to calculate the edit distance of wi to every dictionary word, we prune the list of

dictionary words by computing the ratio r(wi, dj) =
comm(wi,dj)
max(|wi|,|dj |)

for every dictionary word dj ,

where comm(wi, dj) is the number of (non-unique) character trigrams wi and dj have in common
[21]. Let d(wi) = argmaxdj∈Dr(wi, dj), which can be found efficiently by using an inverted index of
character trigrams. Next, only the string edit operations between wi and d(wi) need to be tallied. In
the case that multiple dictionary words share the same maximum ratio with wi, the edit operations of
wi are ignored, because in our experience, using such words skews the edit counts toward commonly
occurring letters such as e. After the edit counts have been tabulated, each cluster ID in C̃ is
re-mapped to the string it most frequently edits to.

4 Experiments

In this section, we describe the data sets and results from our experiments. The lexicon used comes
from the Spell Checker Oriented Word Lists 2 and contains 10683 words.

4.1 Artificial Data

Artificially generated data provides a sanity check for the performance of the decoding algorithm
under optimal input conditions and allows us to examine the robustness of the algorithm by varying
the amount of noise present. We use two types of artificial data in our experiments, one to simulate
perfect character segmentation and clustering, and another that more closely resembles conditions
for real-world image data.

4.1.1 ASCII Codes

The best-case scenario for the decoding algorithm is when (1) there is a bijective mapping between
clusters and the output alphabet Σ, and (2) the alphabet of the lexicon used by the decoder equals
Σ. To simulate this condition, we clean data from the Reuters corpus by removing all numerals
and punctuation marks, and lowercasing all remaining letters. The three hundred files with the
most words after preprocessing selected, and the ASCII codes of the text is given to the decoder.
The number of words in these files range from 452 to 1046. Table 3 shows the performance of the
algorithm, and Table 1 lists some correctly decoded words that are not in the dictionary. Most
errors involve mislabeling the letters j and z, which make up 0.18% and 0.07% of the characters,
respectively. In comparison, the letter e, which comprises 9.6% of the characters, was recalled 100%
of the time.

4.1.2 Leetspeak

Leetspeak (or Leet) is a form of slang used in Internet chat rooms and forums that involves the
substitution of letters with similar looking numerals (e.g., 3 for e), punctuation marks (e.g., |-| for
h), or similar sounding letters (e.g., ph for f). In addition, letter substitutions may vary from one

2http://wordlist.sourceforge.net/

6

a @, 4 h }{, # o 0 v \/
b 8, b i !, i p 9, |o w w

c c, [j j q q, O x ><, x

d d k k r r, 2 y y

e 3, e l 1, l s $, z z %

f ph m (V), m t 7, t

g g, 6 n n u u, v

Table 2: Character substitutions for our Leetspeak data. When a character has multiple mappings,
the substitution is picked uniformly at random.

gold is expected to continue its rise this year due to renewed

inflationary pressures especially in the us

g01d !$ ex|oect3d t0 [0n7!nve i7z ri$e 7#!$ y3@2 due t0 r3new3d

!nphl@t!0n@2y |orezzur3z ez9eci4l1y in t#e uz

Figure 1: A snippet of a Reuters news story translated into Leet.

word to the next, so that the letter s may be written as $ in one word and 5 in the next. As an
example, the word Leetspeak itself may be written as !337$p34k.

Understanding Leet requires resolving some of the same issues as the character recognition task.
More than one character in Leet can be used to represent the same alphabet letter, which mirrors
the problem of split clusters. Multiple Leet characters can be used to represent the same alphabet
letter, and this mirrors the problem of over-segmentation of character images.

Table 2 shows the substitutions we made to each letter, and Figure 1 gives a partial Reuters
news story translated into Leet. Note that the substitutions are defined such that no two original
letters share any characters in their mappings. This is done only as a simplification of the problem,
since Leetspeak can be much more involved than what is presented here. We ran the decoding
algorithm on the same 300 Reuters stories encoded in Leet, and Table 3 gives the character and
word accuracies. The decoding performance on Leet is just as good as on the ASCII data with
similar types of errors, so our algorithm seems to be robust to multiple representations of the same
character and split characters.

4.2 Document Image Data

We evaluated our program on two sets of document images. The first one consists of 201 Reuters
news stories preprocessed in the manner described above and then rendered in unusual font styles
(see Figure 2). These images are clean but do contain ligatures. The second set of images comes
from the OCR data set of the Information Science Research Institute at UNLV [32], which includes
manually-keyed ground truths and segmentations of pages into text zones. From a collection of
Department of Energy reports in the UNLV data set that were scanned as bi-tonal images at 300
dpi, we selected 314 text zones that are primarily text (excluding zones that contain tables or math
formulas) for recognition.

4.2.1 Image Rectification

Many of the scanned images are slanted, where lines of text are not parallel to the top and bottom
edges of the image. Although the clustering step is able to deal with slanted character images, rectifi-
cation is performed to facilitate identifying the reading order and inter-word spacing for decryption.

Our rectification algorithm is based on an entropy measure of ink distributions. For each hori-
zontal line of pixels in the image, we count the number of pixels occupied by ink, so that a projection
profile of the image obtained as in [22] and [17]. The idea is that the ideal rotation of the image
gives a projection profile with the highest entropy. We search for the best rotation angle from the

7

ASCII Leetspeak
character accuracy 99.80 99.65
word accuracy 98.84 98.06

Table 3: Decoding performance on 300 Reuters news stories encoded in ASCII code and Leetspeak.

Figure 2: Samples of the unusual fonts used to create document images of Reuters stories.

range of [−10◦, 10◦] in 1◦ increments. To speed up this process, the image is initially rotated 1◦,
then −1◦, and only the direction that increases the entropy is taken. The search stops as soon as
the entropy decreases, as it indicates over-rotation.

After rectification, the image is despeckled by removing isolated single-pixel ink blots. Each
connected component is extracted and resized to fit within a 60 x 60 pixel image centered at its
centroid. To cluster the images, pairwise distances are computed by shifting one of the images
around a 3 x 3 window and taking the smallest Hausdorff distance.

4.2.2 Determining Word Demarcations

Our decoding algorithm relies on accurate segmentation of the sequences of cluster IDs into word
units, so a principled method is needed to identify word demarcations. Figure 3 shows a typical
histogram for horizontal spacing between adjacent connected components on an image, where the
left hump corresponds to spaces within a word, and the right hump spaces between two words.
We model such histograms as mixtures of two Poisson distributions, one for intra-word spaces and
another for inter-word spaces. The model is optimized by gradient ascent to find a threshold c above
which a horizontal spacing constitutes a word break.

Formally, the probability of a particular spacing si is defined by

P (si|c, λ1, λ2) = P (si ∈ P1|c)P1(si|λ1) + P (si ∈ P2|c)P2(si|λ2)

= P (si ∈ P1|c)P1(si|λ1) + (1− P (si ∈ P1|c))P2(si|λ2)

= I(si > c)P1(si|λ1) + (1− I(si > c))P2(si|λ2),

where I is the indicator function, and Pj (j = 1, 2) are Poisson distributions:

Pj(si|λj) =
e
−λj λ

si
j

si!
.

Given the list of spaces (s1, ..., sN), the objective function is simply defined by the likelihood of
the data:

Ω(c, λ1, λ2) =
N
∏

i=1

P (si|c, λ1, λ2).

8

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Figure 3: A typical histogram of horizon-
tal spaces in an image. The x-axis is the
gap size measured in pixels, and the y-
axis is the count. The solid and dashed
curves are the two Poisson distributions
fitted by gradient ascent, and the vertical
line indicates the threshold c.

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

I(x > 5)
1/(1+exp(5−x))

Figure 4: Sigmoid approximation to the
indicator function I(x > 5). The indica-
tor function is softened to facilitate the
optimization procedure for finding word
demarcations.

The goal is to find the parameters θ = (c, λ1, λ2) that maximize Ω. One technique for doing so
is gradient ascent, where θ is initialized to a random point θ0, and at iteration t+1 it is updated by
θt+1 ← θt + ρ∇θΩ(θt), where ρ is the learning rate and ∇θΩ is the gradient of Ω. The learning rate
ρ is adapted using the bold driver algorithm, and the search continues until the objective function
does not improve much from the previous iteration.

The indicator function is discontinuous so is not everywhere differentiable, thus complicating the
optimization routine. We avoid this problem by approximating I by a shifted sigmoid function (see
Figure 4): I(si > c) ≈ 1

1+ec−si
.

4.2.3 Choosing the Number of Clusters

A fundamental issue in data clustering is choosing the number of partitions for the data. The
heuristic we use is based on the “elbow criterion.” In each step of agglomerative clustering, the
distance between the two clusters to merge is plotted, giving a curve that resembles the exponential
function (see Figure 5). The number of clusters to form is then be derived from a point c where the
slope of the curve begins increasing faster than some threshold value τ . In our experiments, τ is set
to 0.005.

4.2.4 Document Image Results

Figure 6 shows the histograms of character accuracies on the Reuters and UNLV test images. On
the UNLV images, the mean accuracy of word demarcations, averaged over the number of images,
is 95.44%. Althogh this figure initially looks promising, images with very low accuracies are caused
by unrecoverable errors in word segmentation. Our decoding algorithm also misses all digits, punc-
tuation marks, and uppercase letters.

5 Discussion

A major weakness in our unsupervised approach, similar to the results presented in [15], is its
inability to recognize numerals, punctuation marks, and uppercase letters. Using image-to-character
classifiers to identify these special characters beforehand proves beneficial, as discussed in [16]. To
this end, we have done preliminary experiments that combine the scores from cryptogram decoding
with outputs from a robust maximum-entropy character classifier used by Weinman and Learned-
Miller [37]. The results are noticeably better, with mean character accuracy in the mid 80% range

9

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

Figure 5: The dashed curve corresponds to the distance between the merged objects in each step of
agglomerative clustering. The solid curve is its derivative, and the vertical line indicates the cutoff
point c where the derivative first becomes greater than τ . There were 716 objects on the document
image, and c = 626, so the final number of clusters is k = 90.

50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

(a) (b)

Figure 6: Histograms of character accuracies. (a) For 201 Reuters stories rendered in unusual fonts.
Averaged over the number of images, mean accuracy is 88.09%. (b) For 314 Department of Energy
documents. Averaged over the number of images, mean accuracy is 73.78%. Limiting evaluation to
lowercase characters gives a mean accuracy of 78.85%.

for the UNLV data set, although there remain many simple steps that can improve accuracy but are
not yet implemented, such as using character heights to distinguish between lowercase and uppercase
letters.

In our system that combines scores from the decoder and classifier, the most common error
comes from the segmentation stage, as the segmentation scheme used was fairly simple and both
sides require proper character segmentation as a preprocessing step. A conservative estimate shows it
accounts for at least 7% of the errors. An extensive treatment of alternative segmentation techniques
used by OCR systems can be found in [7]. To be robust to ink smears and fractured characters,
a segmentation-free approach such as [12] and as done in many handwritten recognition systems
[1, 4, 9, 10, 20, 26, 28], can be used, but for our system to remain font-independent we need to find
the alphabet of the document automatically, perhaps by using strategies developed for document
compression such as the Lempel-Ziv algorithm.

More immediately correctable of the common errors are those that confuse characters with similar
appearances, such as upper- and lowercase s and c, and characters such as l, I, and 1. This type of
errors can be corrected by imposing language constraints or use a spell checker in a post-processing

10

step. We estimate that this problem accounts for around 8% of the errors. There have been several
lines of work on OCR error correction. Taghva and Stofsky [35] devise an interactive correction
system that ranks candidate replacements by n-gram statistics and longest common subsequences.
In [36], an automatic correction system trained on word bigram and character n-gram statistics
obtained from the same domain as the test data is shown to achieve large error reductions. Kolak
and Resnik’s OCR error correction [19] is based on a noisy channel model trained on pairs of ground
truth and OCR output words, and compares favorably against unsupervised string edit corrections.

6 Conclusion

We presented an unsupervised OCR system using character clustering with canopies and a cryp-
togram decoding algorithm based on numerization strings. Its performance was evaluated on artifi-
cial and real data. Under ideal input conditions, where both character segmentation and clustering
are correct, our decoding algorithm can correctly decode almost all words, even those absent from
the lexicon. Although not sufficient in and of itself, our decoding approach, when augmented with
appearance models, can improve recognition performance in a complete OCR system.

Acknowledgements

We would like to thank Jerod Weinman for his insightful discussions and code for training character
models.

References

[1] Flvio Bortolozzi, Alceu de Souza Britto Jr., Luiz S. Oliveira, and Marisa Morita. Recent advances in
handwriting recognition. In Proceedings of the International Workshop on Document Analysis, pages
1–30, 2005.

[2] Thomas M. Breuel. Classification by probabilistic clustering, 2001.

[3] Eric Brill and Robert C. Moore. An improved error model for noisy channel spelling correction. In
Association for Computational Linguistics, 2000.

[4] Horst Bunke, M. Roth, and Ernst Gnter Schukat-Talamazzini. Off-line cursive handwriting recognition
using hidden markov models. Pattern Recognition, 28(9):1399–1413, 1995.

[5] George Casella and Edward I. George. Explaining the gibbs sampler. The American Statistician,
46:167–174, 1992.

[6] Richard .G. Casey. Text OCR by solving a cryptogram. In International Conference on Pattern
Recognition, volume 86, pages 349–351, 1986.

[7] Richard G. Casey and Eric Lecolinet. A survey of methods and strategies in character segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):690–706, 1996.

[8] Shou de Lin and Kevin Knight. Discovering the linear writing order of a two-dimensional ancient
hieroglyphic script. Artificial Intelligence, 170:to appear, 2006.

[9] Alceu de S. Britto Jr. A two-stage hmm-based system for recognizing handwritten numeral strings. In
ICDAR ’01: Proceedings of the Sixth International Conference on Document Analysis and Recognition,
page 396, Washington, DC, USA, 2001. IEEE Computer Society.

[10] Michael Decerbo, Ehry MacRostie, and Premkumar Natarajan. The BBN Byblos Pashto OCR system.
In HDP ’04: Proceedings of the 1st ACM workshop on Hardcopy document processing, pages 29–32,
New York, NY, USA, 2004. ACM Press.

[11] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

[12] Jaety Edwards and David A. Forsyth. Searching for character models. In NIPS, 2005.

[13] Chi Fang and Jonathan J. Hull. A modified character-level deciphering algorithm for OCR in degraded
documents. In SPIE Conference on Document Recognition II, 1995.

11

[14] George W. Hart. To decode short cryptograms. Communications of the ACM, 37:102–108, 1994.

[15] Tin Kam Ho and George Nagy. OCR with no shape training. In International Conference on Pattern
Recognition, 2000.

[16] Tin Kam Ho and George Nagy. Identification of case, digits and special symbols using a context window,
2001.

[17] Rajiv Kapoor, Deepak Bagai, and T. S. Kamal. A new algorithm for skew detection and correction.
Pattern Recogn. Lett., 25(11):1215–1229, 2004.

[18] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220:671–680,
1983.

[19] Okan Kolak and Philip Resnik. OCR error correction using a noisy channel model. In Human Language
Technology Conference, 2002.

[20] Andras Kornai. Experimental HMM-based postal OCR system. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1997.

[21] Karen Kukich. Technique for automatically correcting words in text. ACM Computing Surveys,
24(4):377–439, 1992.

[22] Kevin Laven, Scott Leishman, and Sam Roweis. A statistical learning approach to document image
analysis. In 8th International Conference on Document Analysis and Recognition, 2005.

[23] Dar-Shyang Lee. Substitution deciphering based on hmms with applications to compressed document
processing. IEEE Trans. Pattern Anal. Mach. Intell., 24(12):1661–1666, 2002.

[24] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Doklady
Akademii Nauk SSSR, 163:845–848, 1965.

[25] Dimitri A. Lisin, Marwan A. Mattar, Matthew B. Blaschko, Mark C. Benfield, and Erik G. Learned-
Miller. Combining local and global image features for object class recognition. In Proceedings of the
IEEE Workshop on Learning in Computer Vision and Pattern Recognition, June 2005.

[26] Zhidong Lu, Issam Bazzi, Andrs Kornai, John Makhoul, Premkumar Natarajan, and Richard Schwartz.
A robust, language-independent OCR system. In Proceedings of the 27th AIPR Workshop: Advances
in Computer-Assisted Recognition, 1999.

[27] Christopher D. Manning and Hinrich Schtze. Statistical Natural Language Processing. MIT Press, 1999.

[28] Urs-Viktor Marti and Horst Bunke. Handwritten sentence recognition. In 15 th International Conference
on Pattern Recognition, 2000.

[29] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. In KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 169–178, New York, NY,
USA, 2000. ACM Press.

[30] George Nagy. Efficient algorithms to decode substitution ciphers with applications to OCR. In Pro-
ceedings of International Conference on Pattern Recognition, ICPR 8, 1986.

[31] George Nagy. At the frontiers of OCR. In Proceedings of the IEEE, 1992.

[32] Thomas A. Nartker, Stephen V. Rice, and Steven E. Lumos. Software tools and test data for research
and testing of page-reading OCR systems. In International Symposium on Electronic Imaging Science
and Technology, 2005.

[33] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:623–
656, 1948.

[34] Michael D. Shapiro and Matthew B. Blaschko. Stability of hausdorff-based distance measures. In
Visualization, Imaging, and Image Processing, 2004.

[35] Kazem Taghva and Eric Stofsky. OCRSpell: an interactive spelling correction system for ocr errors in
text. IJDAR, 3:125–137, 2001.

[36] Xian Tong and David A. Evans. A statistical approach to automatic OCR error correction in context.
In Proceedings of the Fourth Workshop on Very Large Corpora, 1996.

[37] Jerod Weinman and Erik Learned-Miller. Improving recognition of novel input with similarity. In In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

12

