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ABSTRACT

IMAGE CLASSIFICATION WITH BAGS OF LOCAL

FEATURES

MAY 2006

DIMITRI A. LISIN

B.S., WORCESTER POLYTECHNIC INSTITUTE

M.S., WORCESTER POLYTECHNIC INSTITUTE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik G. Learned-Miller

Many classification techniques expect class instances to be represented as feature

vectors, i.e. points in a feature space. In computer vision classification problems, it is

often possible to generate an informative feature vector representation of an image,

for example using global texture or shape descriptors. However, in other cases, it

may be beneficial to treat images as variable size unordered sets or bags of features,

in which each feature represents a localized salient image structure or patch. These

local features do not require a segmentation, and can be useful for object recognition

in the presence of occlusion and clutter.

The local features are often used to find point correspondences between images to

be later used for 3D reconstruction, object recognition, detection, or image retrieval.

However, there are many cases when exact correspondences are difficult or even impos-

sible to compute. Furthermore, point correspondences may not be necessary, unless

vi



one is interested in recovering the 3D shape of an object. If the correspondences are

not computed, then this representation indeed constitutes an unordered set of local

features.

In this dissertation we present methods for object class recognition using bags of

features without relying on point correspondences. We also show that using bags of

features and more traditional feature vector representation of images together can

improve classification accuracy. We then propose and evaluate several methods of

combining the two representations. The proposed techniques are applied to a chal-

lenging marine science domain.
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CHAPTER 1

INTRODUCTION

Object recognition is a fundamental problem in computer vision. Early attempts

to solve this problem relied on CAD-like models of objects designed by people [74].

Using these models typically involved finding a transformation that would optimally

align the model with the image. The disadvantage of such approaches is that they

are not scalable to large sets of objects.

In the late 1990’s algorithms have been developed that can learn the appearance

of particular objects from example images labeled by people (e. g. [47]), and then

recognize these same objects in new unlabeled images. Methods of this type do

not require models of objects to be carefully constructed by hand. However, applying

them to classifying images of objects into broad categories such as “chairs” or “lamps”

has proved to be more difficult. This type of object recognition is usually called object

class recognition or object categorization.

In this dissertation we focus on algorithms for automatically labeling images of

plankton. Each image typically depicts one organism, which needs to be classified into

a correct taxonomic category. This is an object categorization problem, because each

image shows a different organism, rather than different views of the same organism.

In our attempt to solve this problem we explore different image representations and

machine learning algorithms. In particular we investigate representing images with

unordered sets or bags of local features.
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1.1 Using Local Features Without Correspondences

Representing images as sets of local features has been used in many computer

vision problems. More precisely, by local features we denote descriptors of localized

image neighborhoods, centered around certain points of interest. The origins of lo-

cal features are in the problems of stereo matching [82] and 3D reconstruction [72],

where correspondences between points in two or more images are required. Some ap-

plications, such as generating digital elevation maps, require correspondences between

all pixels in two or more images [27]. This is often called “dense stereo”, and it is

computationally expensive. For other applications, such as mosaicking [7], or vision-

based robotic manipulation [57], it is sufficient only to compute correspondences for

some of the pixels, reducing the amount of computation. A subset of pixels, usually

called interest points, is chosen in each image, and some descriptor of the image patch

around each point is computed. The descriptors are used to assess the similarity of

features, which is used, in conjunction with other constraints, for determining the

correspondences.

In recent years local image features have also been used for the problems of object

recognition [47, 22, 40, 56], object detection [47], and image retrieval [49]. These

problems are often more challenging, because many of the assumptions used in stereo

matching are no longer applicable. In stereo matching one is typically dealing with

two images of the same scene taken from similar points of view. In the case of general

object recognition, complications such as changes in viewpoint, scale, and lighting or

presence of clutter and occlusion are to be expected. In object categorization we are

even looking at images of the same object, but rather at instances of a broad class of

objects.

In the face of these complications, local features offer a number of advantages over

many other techniques, such as appearance-based approaches using global descriptors,

e.g. eigenspace methods [73], or many approaches that use shape [4] or texture [61].
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Local features usually yield a highly redundant representation of an object, which

is robust with respect to occlusion, when some of the features are not visible. Most

object recognition methods that use local features are also robust to the presence of

spurious features corresponding to the background clutter, and thus do not require

figure-ground segmentation.

Approaches using local features usually consist of three distinct parts: the interest

point detector, the feature descriptor, and the feature matching algorithm, that assigns

the correspondences between features. A plethora of methods of interest point de-

tection and methods of defining the feature descriptors is described in the literature

and is discussed in Sections 2.3 and 2.4. There are also a number of feature matching

approaches discussed in Section 2.5, which utilize various heuristics.

Even though local features have been used for problems other than stereo match-

ing, the paradigm has remained the same: point correspondences are computed be-

tween images. However, there are many cases for which exact correspondences are

difficult or even impossible to compute. Examples include images of objects with

high in-class variability, objects that are non-rigid, or images with repeating patterns.

Furthermore, point correspondences may not be necessary, unless one is interested in

recovering the 3D shape of an object.

In this dissertation we discuss several algorithms for object categorization that

use local images features without computing explicit point correspondences between

images. One particularly important contribution of this dissertation is the analysis

of an embedding technique called the dissimilarity space [54], which can map stets

of local features onto a Euclidean space. The analysis lead to the development of an

efficient algorithm that has yielded promising results (Section 5.4.2).
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1.2 Application Domain

In this dissertation we propose and analyze several different methods for object

categorization using local image features without explicitly having to establish point

correspondences between query images and the training images. The methods are

applied to two image sets from a challenging marine science domain (Chapter 3).

The images depict different types of plankton, and are collected in situ. The task is

to classify each image into a correct taxon.

Studying plankton is an important part of ecological research. In particular, the

marine biologists are interested in relative abundances of different plankton species

in various areas of the ocean. They have tools at their disposal that are capable of

taking images of plankton in situ. Thousands of images can be produced in a very

short time, which currently need to be classified by experts. This work is part of

an on-going project to automate this time-consuming task, which is a collaboration

between the Computer Vision Research Laboratory at University of Massachusetts

Amherst, the Machine Learning Laboratory also at UMASS Amherst, the Bigelow

Laboratory for Ocean Sciences and the Department of Oceanography at Louisiana

State University.

Automatically labeling plankton images is difficult because of high in-class varia-

tion. Recall that each image depicts a different organism rather than a different view

of the same object. This problem is made more difficult by the fact that the organisms

are photographed at arbitrary 3D orientations, under varying lighting conditions, and

by the fact that many of them are capable of articulated motion. For these reasons

computing meaningful point correspondences is very difficult.

An example of this is shown in Figure 1.1. The figure shows two views of the same

organism, a copepod, taken at the same time at different angles. A state-of-the-art

local feature matching algorithm [47] has produced 9 correspondences, indicated by

dashed lines, out of approximately 400 features detected in each image. Only two of
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Figure 1.1. An example illustrating that computing correspondences even between
images of exactly the same organism is very difficult. Dashed lines connect points
considered to be corresponding by a state-of-the art matching algorithm. Only 2 out
of 9 matches are correct.

these matches are correct. In our data sets each image shows a different organism,

which makes finding correspondences even more difficult.

1.3 Combining Bags of Local Features with Feature Vectors

While local features have certain advantages for object class recognition, other cues

such as shape and global texture can also be helpful. These object characteristics are

usually represented by feature vectors, and require a segmentation of the object from

the background. In most images in our data sets only one organism is present, and

the background is generally uniform. This means that a reasonable segmentation can

be computed (Section 6.1.1).

We thus have two representations for our images: the bags of local features and

the feature vectors. We show in this dissertation that these representations capture

different aspects of the objects of interest, and that using both in conjunction can

increase classification accuracy. However, because one represents an image as an

unordered set of vectors and the other as a single vector, using them together in a

single classification system is not trivial. We present and analyze several methods for

combining the bags of features with feature vectors.
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The rest of the dissertation is organized as follows: in Chapter 2 we present the

background on local features; in Chapter 3 we describe the application domain in

greater detail; in Chapter 4 we describe a maximum likelihood classifier for bags

of local features; in Chapter 5 we present several methods for classifying images

that rely on pairwise comparisons between bags of features; in Chapter 6 we present

the methods for combining bags of features and feature vectors, and, finally, our

conclusions are presented in Chapter 7
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CHAPTER 2

BACKGROUND

In this chapter we discuss various aspects of solving computer vision problems

with local features. We explore the difference between representing images with bags

of local features and feature vectors, present the background on multi-scale image

representation, and attempt to construct a taxonomy of the existing local feature

methods.

2.1 Feature Vectors vs. Bags of Local Features

Many classification techniques expect instances to be represented as feature vec-

tors, i.e. as points in a feature space [19]. For example, if the task were to categorize

people as high school students or college students, then age would be a reasonable

feature, and the feature space would be one-dimensional. When feature vector rep-

resentations are used, the classifier’s task reduces to finding decision boundaries in

feature space to separate classes of objects. In computer vision classification prob-

lems, it is often possible to generate an informative feature vector representation of

an image, for example using global texture or shape descriptors. It is then straight-

forward to apply any of a large number of techniques such as perceptron learning,

logistic regression, or support vector machines to image classification.

For example, eigenspace approaches [73]. usually normalize the images to be the

same size, and treat the resulting arrays of pixels as feature vectors. The dimension-

ality of the resulting space is very high, making classification prohibitively expensive.
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Therefore standard dimensionality reduction techniques, such as the principal com-

ponents analysis, are often used to project the data onto a lower dimensional space.

Other approaches utilize histograms as feature vectors to represent images of dif-

ferent size, without the need for rescaling [61]. Functions of the intensity surface,

such as its derivatives or combinations of derivatives, which are essentially texture

descriptors, can be used instead of the raw pixel values [61].

A feature vector usually describes the image as a whole. As a result, methods

using this representation typically expect an image to contain a single object with

little background and little or no clutter. In this case it may be possible to perform

figure-ground segmentation resulting in a labeling of pixels as belonging to the ob-

ject of interest or the background. This allows for a variety of shape features can

be computed. These include area, perimeter, compactness, moment-based features,

convexity measures, granulometric features, and many others [4]. The values of these

descriptors can also become elements of a feature vector describing the image.

While a feature vector is a compact representation of each image, the fact that

its elements are usually global descriptors can be a weakness. While providing an

overall description, they do not describe the various constituent parts of the image.

For example, a global texture descriptor computed over an entire image [61], or even

over the segmented object of interest, will poorly convey the fact that the object may

contain several distinct types of texture. This is analogous to the Fourier transform,

which describes the global distribution of frequencies in an image, but does not tell

how these frequencies are distributed spatially in the image. By the same reasoning, a

global shape descriptor will not be useful if objects of similar shape are distinguished

by localized interior structures. The information associated with particular locations

in the image, discarded by the global features, can be very important for representing

classes of images, especially in the case of high in-class variability.
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Indeed, there are methods using global texture descriptors that attempt to rep-

resent some of the local information by dividing images into regions. For example, a

face recognition approach using histograms of differential features, proposed by Rav-

ela [61], divides an image of a face into three regions in the vertical direction. The

histograms are then computed for each region separately, and concatenated into a

feature vector. This significantly increased the recognition accuracy compared to us-

ing a single histogram computed over the entire image. Of course, fixed partitioning

works only for highly restricted domains, such as cropped-out faces, where images

can be partitioned in a consistent and meaningful fashion. This will not work for

a more diverse domain, such as images of phytoplankton, where a consistent fixed

partitioning scheme cannot be applied.

Local features take the idea of representing different regions of an image to the

extreme. They represent very small neighborhoods around certain image locations,

i. e. the interest points. Representing an image by a set of such local features em-

phasizes the aspects of the image’s appearance overlooked by the global features.

However, local features yield a much less compact representation of images. Images

are no longer described by single feature vectors, but rather by sets of different num-

bers of vectors. This makes it difficult to use standard classification and clustering

techniques, which usually assume that each instance is representable as a single point

in space.

2.2 Scale-Space Representation of Images

The concept of scale is extremely important in computer vision. It is illustrated

by the following example: suppose we have taken several images of the same scene by

successively moving the camera farther and farther away from it. If we then examine

the resulting images, we will find that as the distance from the scene increases, the

smaller structures in the image become less distinct, and eventually disappear en-
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tirely. In each image, structures of a certain size are still clearly visible, while smaller

structures have already vanished.

The process of taking multiple images of a scene from increasing distances is

modeled mathematically by convolving a single image of the scene with a number of

Gaussian kernels of increasing σ. The result of each convolution is called a “scale

plane.” The scale planes form a 3D volume, called the scale-space of the image

[79]. Here we can observe the same phenomenon: the smaller structures become

less pronounced at coarser scales, and eventually vanish completely. The scale space

provides a convenient framework for obtaining a robust representation of the image

structures of different sizes that is stable with respect to scale changes.

The Gaussian function is used for generating the scale-space of an image because it

satisfies a number of important conditions. These are causality, meaning that coarse-

scale structures are caused by fine-scale structures, and spurious artifacts are not

introduced; isotropy, meaning that the Gaussian operator does not have a preferred

direction; homogeneity, meaning that the operator is a translational invariant; scale-

similarity, meaning that the Gaussian function does not change shape with scale [61].

The Gaussian and its derivatives form a unique family of functions for constructing

the scale-space that satisfy these conditions.

The mathematical formulation of scale-space was originally proposed by Koen-

derink [41], and then further expanded by Lindeberg [43]. An in-depth discussion

of scale-space, including implementation details is presented by Ravela [61]. In this

dissertation we discuss local features computed at multiple scales, which make our

approaches robust with respect to scale changes.

2.3 Interest Point Detection

In theory one can define a local feature at every pixel in the image. However,

this generates a very large number of features, most of which are not necessary for
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classification. To keep the number of features manageable, and at the same time to

preserve most of the information contained in the image, local features are computed

at an appropriate subset of pixels, called interest points. At a very high level this is

analogous to using dimensionality reduction in eigenspace methods [73].

The interest points are usually defined as local extrema of some function of the

image, and are designed to correspond to image structures that are deemed important.

Examples of such structures include edges, which are points in the image where the

signal changes abruptly; corners, which are points where the signal changes in two

directions; and blobs, which are patches of relatively constant intensity, distinct from

the background.

2.3.1 Evaluation of Interest Point Detectors

Schmid et al. [64] propose criteria for evaluating different interest point detectors.

These are repeatability and information content. An interest point is repeated if it

is detected at corresponding locations in two images. The notion of information

content of an interest point has to do with how distinct it is, i. e. how likely it is to

be mismatched.

Repeatability is defined as the ratio of the number of repeated interest points to

the total number of interest points detected in an image [64]. Repeatability of an

interest point detector is estimated by detecting the interest points in pairs of images

related by a known transformation [64], so that the true correspondences are known.

It should be noted, however, that interest points are more likely to be repeated

between two images if their density in the image is high. In other words, this definition

rewards detectors that produce more interest points. This defeats the purpose of using

interest points in the first place, which is to reduce the amount of information to be

processed. A better definition of repeatability would take into account the density
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of the interest points in the image, which is the prior probability of encountering an

interest point at a particular pixel.

To define the information content of interest points [64], a feature vector of differ-

ential invariants is computed at its location in the image. The information connected

is then defined as the entropy of the resulting set of features. Again, this definition

is clearly limited. It only measures the information content with respect to a partic-

ular feature descriptor, namely the differential invariants. There does not seem to be

any reason to believe that if one type of interest points has higher information con-

tent than another with respect to the differential invariants, it will still have higher

information content with respect to some other feature descriptor.

Despite their shortcomings the definitions of repeatability and information content

[64] discussed above provide an important basis of comparison for interest point detec-

tors. Proposing these measures is a step in the right direction toward understanding

and formalizing approaches that use local features.

2.3.2 Examples of Interest Point Detectors

In this section we describe several interest point detectors. These can be broadly

categorized into “blobs”, “corners”, and “wavelet-based”.

2.3.2.1 Blobs

Lindeberg [43] has formalized the notion of a “blob” in the image. A blob is a

roughly circular image region containing similar intensity values. Centers of blobs

are often used as interest points. Specifically, Lindeberg’s interest points are local

maxima in x, y, and scale of the Laplacian of the image. The Laplacian is computed

at several scales using Gaussian derivative filters. The σ of the scale plane of a

particular interest point corresponds to the radius of that particular blob.

Many approaches, including Scale Invariant Feature Transfrom (SIFT) [46], use

the Difference-of-Gaussians (DOG) interest point detector, which approximates the

12



(a) Downtown Seattle (b) Difference-of-Gaussians (c) Harris-Laplacian

Figure 2.1. Examples of interest point detectors.

Laplacian. The DOG function of the image is computed by subtracting adjacent scale

planes generated by convolution with Gaussian filters. Again, local maxima of the

DOG function in x, y, and σ are used as interest points. These points correspond to

the same blob-like structures as the maxima of the Laplacian, but the DOG function

requires less computation. For the Laplacian Ixx and Iyy must be computed at every

scale (at least 2 convolutions), while DOG only requires the scale planes themselves

(1 convolution). An example of the interest points produced by the DOG detector is

shown in Figure 2.1(b). Every interest point is located at the base of an arrow. The

length of an arrow indicates the scale at which the interest point was detected, and

the direction corresponds to the dominant gradient orientation around the interest

point.

2.3.2.2 Corners

Corners are another type of image feature used as interest points. Formally,

corners are defined as points of high curvature of the intensity surface of the image

[82] [56], or as points, where the signal changes in two directions [64]. For example,

13



the corner detector used by Piater [56] returns the local maxima of the isophote

curvature of the intensity surface 1:

isophote(I) = IxxI
2
y + 2IxIyIxy + IyyI

2
x, (2.1)

where I is the image. The curvature is computed at multiple scales using Gaussian

derivative filters.

Arguably the most popular corner detector is the one proposed by Harris and

Stevens [29]. The Harris detector, as it is usually called, is an improvement of an

earlier technique developed by Moravec [51], which is based on the auto-correlation

function of the signal. The Harris detector computes the auto-correlation matrix at

each pixel in the image, and considers it an interest point if both eigenvalues of the

matrix are high. Schmid et al. [64] describe the Harris features along with several

other related corner detectors in more detail.

One of the disadvantages of the Harris detector is that it has no inherent notion of

scale. In other words it only finds interest points that correspond to the finest scale

plane of the image. To address this Mikolajczyk and Schmid [49] have proposed an

extension to the Harris detector known as Harris-Laplacian. This method generates

the Gaussian scale-space, and detects the Harris features at every scale plane. After

that, the interest points that do not correspond to local maxima of the Laplacian in

the scale direction are discarded. An example of Harris-Laplacian corners is shown

in Figure 2.1(c). The centers of circles corresponds to the interest points, and their

radii indicate scale.

1The isphote curvature is the curvature of the level curve, which is the intersection between the
intensity surface of the image and a horizontal plane.
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2.3.2.3 Wavelet-based Detectors

Another family of interest point detectors uses wavelets. Shokoufandeh et. al [69]

propose a system in which a multi-scale decomposition of an image is computed using

a 1D wavelet at a range of orientations. The local maxima of the sum of the wavelet

responses are used as interest points.

An approach by Sebe et. al [67] uses a 2D wavelet transform of the image. The

wavelet coefficients are tracked across scales from the coarsest scale to the original

pixels, and the “saliency value” of a pixel is set to the sum of all the coefficients in its

track. The resulting map is then thresholded to obtain the interest points. For images

of natural scenes this detector returns points that are more uniformly distributed

throughout an image than points produced by corner detectors. According to the

authors this results in a “more complete representation” [67]. The performance of

Sebe’s detector is shown to be superior to that of Harris corners using repeatability

and information content metrics proposed by Schmid et al. [64].

2.3.3 The Meaning of Saliency

The interest points are often called “salient” points. The word “salient” is defined

by the Webster’s Dictionary as “prominent”, “conspicuous”, “projecting or pointing

outward.” In other words, it is something that stands out from its surroundings.

The interest points defined by the above mentioned detectors are not necessarily

salient in this intuitive sense. Saliency depends on the context, which these feature

detectors do not really take into account. For example, a corner would not at all

seem salient in an image of a grid pattern. Similarly, a stop sign, which is designed

to stand out (Figure 2.2(a)), does not appear salient in Figure 2.2(b).

Walker et al. [77] have proposed an interest point detector that corresponds more

closely to the Webster’s definition of saliency. A local feature descriptor consisting of

differential invariants is computed at every pixel of the image forming a large feature
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(a) (b)

Figure 2.2. Saliency depends on context.

space. The saliency of a feature point is represented by the density of the feature

space, which is computed using kernel estimation. Features in the low density areas

of the space are considered to be more salient. This approach determines the saliency

of points from the data, rather than using a generic notion of which points “should”

be salient.

Interestingly, this approach produces interest points that by construction have

high information content with respect to the feature descriptor used. Unfortunately,

high repeatability for these points cannot be guaranteed. Consider two images of

large scenes containing the same object on very different backgrounds. The densities

of the feature spaces corresponding to the two images are likely to be very different.

As a result the points corresponding to the object may easily end up in areas of

different densities and may be considered salient in one image but not the other.

A similar approach is presented by Lisin et al.[44]. Instead of estimating the den-

sity non-parametrically over all the features from every pixel, this method estimates

the density of the feature at each pixel locally, using the features at the neighboring

pixels. It then uses an outlier detection method to determine the saliency of each

feature.
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This method is based on the same notion of computing the saliency of the features

from the data. Its complexity is O(n), as opposed to the O(n2) complexity of the

Walker’s approach [77], and the repeatability of the resulting interest points is likely

to be higher. The latter, however, can also be due to the fact that a very large

number of interest points is detected. Also, because the saliency of the points is

defined using only their immediate neighbors in the image, they are likely to have

lower information content. However, the saliency of these points should be affected

little by the background or clutter.

Another attempt to formalize the intuitive notion of saliency was proposed by

Kadir and Brady [37]. They define an image region to be salient if the entropy of

some value computed at every pixel in the region is high. For example, the value can

be pixel intensity or color. In other words, image patches containing highly varying

signal have high entropy and are considered salient. Intensity distributions of image

patches containing uniform or slowly varying signal will exhibit one or more strong

peaks resulting in low entropy.

The entropy is computed for image regions of different sizes, resulting in a multi-

scale interest point detector. This original detector used circular windows [37]. An

anisotropic version of the detector using ellipses has also been proposed [38], and a

fully affine-invariant version has been developed [39].

Kadir and Brady’s idea of using entropy of a region as a measure of saliency

resulted in a high quality interest point detector. However, it also does not entirely

correspond to the dictionary definition of “salient.” When the detector was applied

to an image of a leopard [39], almost every one of the leopard’s spots was considered

salient. However, intuitively we know that the individual spots are insignificant. It is

the texture pattern they form, that can make the whole leopard salient depending on

the background. In fact, trying to match individual spots does not seem to be very

useful at all, since they all are essentially the same.
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We conclude the discussion of saliency by stating that not all interest points are

salient in the intuitive sense. Whether or not a point or a patch in an image is salient

heavily depends on the context, i. e. the rest of the image. Because of that, points

or patches that are truly salient may not be repeatable, and thus may not be good

interest points. However, saliency can be useful as a focus-of-attention mechanism

[33], which is very different from finding interest points for matching.

The term salient points does not quite capture the properties that interest points

are expected to have. For example, to be effective interest points need to be repeat-

able, which may contradict the dictionary definition of “salient”. For this reason

throughout the rest of this dissertation we shall use the term interest points.

2.4 Local Feature Descriptors

The feature descriptor is an essential part of all methods using local features. After

interest points have been detected, descriptors need to be computed to represent the

image patches around those points. The simplest feature descriptor can be defined

using the pixel values around an interest point. For example, many stereo matching

systems simply define a window around an interest point and use cross-correlation

to detect it in another image [82]. Unfortunately, in many situations, using raw

pixel values will not yield the best performance, because this feature descriptor is not

robust to rotation and changes in scale, lighting, and viewpoint.

2.4.1 Differential Feature Descriptors

More sophisticated feature descriptors based on image derivatives have been pro-

posed. Taylor series expansion allows us to approximate the intensity surface of the

image to an arbitrary precision using image derivatives. Therefore, derivatives com-

puted at a pixel describe the image patch around it.
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Figure 2.3. Gaussian derivative filters up to the 2nd order.

The simplest differential feature representation at a pixel can be defined by com-

puting the derivatives up to some order at that pixel. This is typically done using

Gaussian derivative filters, shown in Figure 2.3, which means that the derivatives can

be computed at a range of scales. This descriptor is known as the local jet [41].

There are two methods for making a differential feature descriptor invariant to

in-plane rotation. The first one is to normalize the derivative responses for rota-

tion using steerable filters [23]. The second one is to compute rotationally invariant

combinations of the derivatives, such as the gradient magnitude, the Laplacian, and

the isophote and flowline curvatures [61]. Interestingly, the feature descriptors using

steered derivatives seem to yield higher matching accuracy than those using differen-

tial invariants. According to Mikolajczyk and Schmid [50] this is probably due to the

accumulation of errors when the combinations of derivatives are computed.

Differential descriptors provide a compact low-dimensional feature representation

that can be computed relatively inexpensively. They have been used in many methods

for object recognition from gray scale images [77] [44] [56], and they have also been

extended to color images [25].

2.4.2 Region-based Feature Descriptors

Very effective feature descriptors can be computed over image patches around

interest points, unlike the differential descriptors computed at the interest points.

The most famous example is the SIFT (Scale Invariant Feature Transform) features

19



[46]. Each SIFT descriptor is a three-dimensional histogram of gradient orientations

(x, y and θ), computed over a Gaussian-weighted window around an interest point,

which is represented as a vector of 128 elements. This descriptor has been shown to

perform exceptionally well, compared to differential descriptors computed at interest

points [50].

Two variations to the SIFT descriptor have been proposed. The first, known as

PCA-SIFT [40], also uses the gradient around an interest point, but does not compute

a histogram. Instead this approach represents an image patch around an interest point

as a long vector of the values of the gradient orientation and magnitude, and then uses

the principal components analysis to reduce the dimensionality. The second variation,

known as the Gradient Location and Orientation Histogram (GLOH) improves the

SIFT descriptor by using a log-polar histogram in x and y [50].

2.4.3 Evaluation of Feature Descriptors

Mikolajczyk and Schmid [50] present a very thorough evaluation of the feature

descriptors mentioned above, as well as several others. The performance evalua-

tion of the descriptors was done in the context of finding point correspondences be-

tween images of the same object or scene under various distortions, such as scale

change, in-plane rotation, image blur, illumination change, and even JPEG com-

pression. The distorted images, aside from the case of the JPEG compression, were

not simulated. Rather, they were obtained by varying the camera zoom, angle, and

other settings. Descriptor performance was evaluated and compared using the recall-

precision method. The results of the evaluation show that higher-dimensional de-

scriptors computed over a larger support area, namely GLOH and SIFT, significantly

outperform the lower-dimensional differential descriptors.
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2.5 Matching Local Features

In this section we discuss methods for establishing correspondences between sets

of local features. We describe criteria used to determine if a pair of local features from

different images are a match and methods for identifying and discarding matches that

are ambiguous.

2.5.1 Similarity-Based Matching Strategies

Most methods use similarity or dissimilarity measure between two feature de-

scriptors as the primary cue for matching. By similarity we mean a function of two

descriptors that returns a larger value when they are more similar. Conversely, a

dissimilarity measure returns a smaller value when the two descriptors are more sim-

ilar. An example of a similarity measure is a normalized inner product between two

descriptors [56]. Examples of a dissimilarity measure include the Euclidean distance

[46] and the Mahalanobis distance [77, 50, 25].

The Euclidean distance can be used when all components of the descriptor are

expressed in the same units. This, for example, is the case for SIFT, whose descriptor

is a histogram. On the other hand, differential features are usually compared using the

Mahalanobis distance [77, 50, 25], because the ranges of values of their components

differ by orders of magnitude.

Regardless of how the descriptors are compared, there are several common strate-

gies for matching. We describe these strategies in term of a dissimilarity measure, but

they can be easily adapted for a similarity measure. Let d(f1, f2) be the dissimilarity

between feature descriptors f1 and f2. Let F1 and F2 be the sets of features extracted

from images I1 and I2 respectively. One approach to define a match between f1 ∈ F1

and f2 ∈ F2 is to require that

d(f1, f2) = min
f∈F2

d(f1, f). (2.2)
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In other words f1 matches f2 iff f2 is its nearest neighbor in F2. This strategy,

called nearest neighbor (NN) [50] is used by Piater [56]. It can be more restrictive by

requiring that f1 also has to be the nearest neighbor of f2 in F1 [44]. Of course neither

version of the match definition can guarantee that the resulting match is indeed an

actual correspondence.

A different definition of a match simply requires that the distance between two fea-

ture descriptors be less than some threshold t. Under this definition, called threshold-

based matching [50] there may be several matches for feature f1 in the set F2. One

advantage of using this method is that features from different images can be orga-

nized into an indexing structure such as a k-d-b tree [63] to find the matches faster.

An important disadvantage is the fact that choosing the right threshold is always

difficult.

Lowe [46] proposed a heuristic for defining a match, called nearest neighbor dis-

tance ratio (NNDR)[50]. To find a match for a feature f in F , which is a set of

features extracted from a particular image, we consider f1, the nearest neighbor of f

in F , and f2, its second nearest neighbor in F . We define f1 to be a match of f if

d(f, f1)

d(f, f2)
< t, (2.3)

where t is a threshold. Thus a feature is only considered to be a match to its nearest

neighbor if its distance to the second nearest neighbor is significantly larger. The

purpose of this heuristic is to detect cases in which a feature f is similar to many

features in set F , and thus avoid ambiguous matches. One negative side effect of

this is that local features corresponding to repeating patterns in images will not be

matched.

Mikolajczyk and Schmid [50] present recall-precision graphs comparing perfor-

mance of various feature descriptors under three matching strategies: NN, threshold-

based, and NNDR. There was little or no change for all descriptors between NN and
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NNDR, and all descriptors performed worse with the threshold-based matching than

with the other two.

2.5.2 Matching Constraints

The matching strategies using the distance between feature descriptors are de-

signed to decrease the probability of spurious matches. However, incorrect matches

still occur, even with the most appropriate interest point detector and the most robust

feature descriptor. Other constraints are often employed to increase the matching ac-

curacy.

In stereo matching systems the epipolar geometry is the primary matching con-

straint [82]. Usually stereo systems consist of two cameras. The epipolar plane is

defined by a point in the 3D space and its projections onto the images in each of

the cameras. The intersection of the epipolar plane and an image plane is called the

epipolar line. If the cameras are calibrated, meaning that their relative positions and

orientations are known, then for each pixel in one camera a corresponding epipolar

line in the other camera can be easily computed. Thus one only needs to search for

matches along the epipolar lines. This reduces the search space from two dimensions

to one, and increases matching accuracy. With uncalibrated cameras a small num-

ber of feature matches deemed reliable can be used to infer the unknown epipolar

geometry [82].

In tasks such as general object recognition, and especially object class recogni-

tion, the epipolar constraint is not applicable. Instead the geometric arrangement of

features in the image is often used as a matching constraint. Of course, this assumes

that the objects of interest are rigid.

Piater [56] utilizes spatial relationships among the local features by combining

them into compound features using their relative distances and orientations. The

order of the constituent primitive features is fixed: each feature’s match is used as an
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anchor to locate the match of the subsequent feature. Unfortunately, this means that

if any of the features in this chain is matched incorrectly, the remaining ones will be

wrong as well. While combining local features into compound features seems to be

a good idea, this particular method for matching compound features is not likely to

perform very well in the presence of noise or image distortions.

A more robust method of taking into account the spatial relationships among

local features is the generalized Hough transform [1]. It assumes a transformation

between two sets of points in two images, such as the similarity or the affine trans-

formation. Given the candidate correspondences, the transformation parameters can

be computed from triples of matches. The parameters are then placed binned into a

hash table, and the bin with the highest number of hits corresponds to the dominant

transformation. After that, matches that do not fit the dominant transformation can

be discarded.

The original formulation of the generalized Hough transform has a time complexity

of O(mn3), where m is the number of the transformation parameters, and n is number

of matches. Fortunately, its performance can be significantly improved if the location,

scale, and orientation of each local feature is known, as is the case with the SIFT

features [47]. In this case the similarity transformation parameters can be computed

from each single match rather that a triple, and used for the initial binning of matches.

The resulting complexity is O(mn).

An interesting method to represent the spatial relationships among local features

is to incorporate them into the feature descriptor, as proposed by Belongie et al. [2].

For every interest point the descriptor, called the shape context, is defined as the

log-polar histogram of occurrences of the other interest points around it.

Many approaches use probabilistic models to represent the spatial relationships as

well as feature matching in general. These are discussed separately in Section 2.5.3.
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2.5.3 Probabilistic Matching

Matching strategies and constraints discussed above are designed to reduce the

probability of incorrect or spurious matches. However, these methods are mainly

heuristics, and do not guarantee correctness. An attractive alternative is to use

probabilistic matching methods that maximize the probability of correctness directly.

While there are still no guarantees, at least such methods quantify the uncertainty

to let us make more intelligent decisions.

A general probabilistic framework for matching local features is presented by Pope

and Lowe [59]. Their paradigm is to learn the model of a particular object from a

set of training images, and then to use it for recognition. The model is composed of

local features that are not restricted to descriptors of the intensity surface. In fact the

features used by Pope and Lowe [59] are mainly edge based, including line segments,

curve segments, parallel line or curve segments, and others. However, in principle,

the framework is decoupled from the feature definition, and should be applicable to

any type of feature.

The method performs probabilistic alignment of local features taking into account

the feature types such as lines and curves, and feature attributes, represented by

vectors of values specific to particular feature types. The attributes are analogous

to the feature descriptors discussed above. The alignment involves estimating the

transformation parameters between the likely matches of features from the model

and the test image, iteratively adding matches consistent with the transformation,

and updating the parameter estimation. The goal of this process is to maximize the

likelihood of the matches given the transformation parameters. The uncertainty of

the transformed feature locations is modeled by a Gaussian distribution, and the dis-

tributions of feature attribute values are represented non-parametrically. The details

of the treatment of the attributes are explained in Pope’s Ph. D. thesis [58]. To reduce

the computational complexity, the features are assumed to be independent.
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Fergus et al. [22] attempt to solve the problem of object class recognition, rather

than that of recognizing a specific object, by using a similar probabilistic approach.

The task is to decide whether or not an image contains an object of a particular class,

such as cars, motorcycles, or airplanes. This method uses Kadir and Brady’s interest

points [37], and the feature descriptors are patches of intensity values around them,

normalized for brightness and size. The patches are represented as vectors, and the

principal components analysis (PCA) is used to reduce their dimensionality.

The probabilistic model of a class of objects is similar to the one proposed by

Pope and Lowe [59]. It also incorporates similarity between feature descriptors and

the spatial relationships among the interest points. In this case the feature appear-

ance, i. e. the descriptors, is modeled by a Gaussian distribution, rather than non-

parametrically. In addition, this approach models the relative scale of the features

separately. The likelihoods of feature descriptors and their relative scales are assumed

to be independent. The parameters of the model are learned using the Expectation

Maximization (EM) algorithm.

The spatial relationships in Fergus’s approach are also represented differently.

Instead of estimating the transformation parameters by solving the normal equations

[59], translation, rotation, and scale are eliminated by transforming the features in an

image into a shape space [17]. First two reference features f1 and f2 are chosen. The

feature set is then translated so that f1 is at the origin, and then scaled and rotated

so that feature f2 is at (0, 1). The shape of the object in the image is then represented

as a vector consisting of the coordinates of the local features in this new shape space.

The distribution of these shape representations for objects of a particular category is

estimated using a mixture of Gaussians. Each possible choice of f1 and f2 is treated

as a hypothesis, whose likelihood is computed from the estimated distribution [17]

[10].
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Moreels and Perona [52] use a probabilistic matching method together with the

SIFT features [47] in the context of specific object recognition. The features are as-

sumed to be independent and their appearance, position, orientation, and scale are

modeled by separate distributions. The spatial relationships among features are rep-

resented in an interesting fashion. Locations, orientations, and scales of features are

computed with respect to a reference frame defined by the image from which they

were extracted. When two images are compared, a list of candidate matches is com-

piled using only the feature’s appearance. For each candidate match the reference

frames corresponding to the two images are aligned using the difference in location,

scale, and orientation between the matched features. As each additional match hy-

pothesis is considered, the frame alignment is recomputed accordingly to minimize

the mean squared error in the location of the features. The likelihoods of the features’

geometric properties are then computed with respect to the aligned frame.

2.6 Summary

In this chapter we have presented a taxonomy of methods using local features. We

have discussed existing approaches for interest point detection, defining local feature

descriptors, and establishing correspondences. In the next chapter we describe in

detail our application domain, for which computing point correspondences does not

seem to be the best approach. In subsequent chapters we present a number of object

class recognition algorithms that use local features without explicit correspondences.
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CHAPTER 3

APPLICATION DOMAIN

This work is a part of an on-going project in collaboration with marine scientists,

who are interested in studying plankton. They have a variety of image acquisition

tools capable of producing an enormous number of images in a very short time. The

objective of this project is to develop software tools to automate the process of labeling

these images. In this chapter we describe this application domain and, specifically,

the data sets that we used.

3.1 Why Study Plankton?

The Earth’s oceans serve as major sources and sinks of bio-active elements that

naturally cycle through the biosphere. The ocean water is a soup of living (plank-

ton) and non-living (detrital) particles. The importance of plankton for the global

ecosystem cannot be overestimated. Microscopic algae, phytoplankton, are sometimes

called the grasses of the sea. Just like land plants, they consume carbon dioxide and

produce oxygen through photosynthesis. Phytoplankton are an integral component

of the global carbon cycle, which is responsible for regulating the temperature of the

planet [18]. They are also the first link in the food chain for all marine creatures.

Their primary consumers are the zooplankton, who in turn become food for larger

animals.

Studying plankton is important to ecological research. For example, understand-

ing the carbon cycle is necessary to be able to predict global climate changes. On

a smaller scale, studying plankton can allow marine biologists to create early warn-
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ing systems for detecting harmful algal blooms in coastal waters [4]. Applications

in other fields could include ship ballast water treatment, drinking water treatment,

public health, bio-terrorism defense, and industrial chemical processing.

3.2 Previous Work

Research to automate the task of labeling plankton specimens has been going

on for many years [36]. However, many systems have only been shown to work

under controlled laboratory conditions with a cultured population. The specimens

are usually carefully prepared and imaged using high magnification, yielding high

quality images. For example, the ADIAC project [18] resulted in the development of

a system that has been very successful in classification of diatoms from very high-

resolution images. The system uses a wider variety of shape and texture features

along with a range of classification techniques.

Work has also been done attempting to classify field-collected specimens. For

example, Culverhouse et al. have developed a system known as DiCANN for classi-

fication of dinoflagellates [12], which has been tested on images from video-cameras

used underwater, as well as images obtained by laboratory-based instruments. Di-

CANN uses several types of texture and edge-based image features as inputs for a

neural network.

Classifying images collected in situ is a very difficult problem. In many cases even

the human experts disagree. Poor image quality, articulated motion, partial visibility,

high in-class variability, and even fatigue from looking at thousands of images result

in differing opinions among experts on how to classify a particular organism. A study

has been done attempting to evaluate the consistency rate of human experts labeling

images of dinoflagellates [13]. Its conclusion was that on that particular data set

marine scientists agree on image labels only 75-80% of the time.

29



Figure 3.1. The FlowCAM.

One interpretation of this result is that classifying plankton images is a difficult

problem even for human experts. Therefore we should not expect the accuracy of

automatic classifiers to be perfect. Another interpretation is that the labels of the

training images provided by human experts are not necessarily correct, which is likely

to hinder the performance of an automated system.

3.3 FlowCAM Images

One type of plankton image used in this thesis has been acquired by an instrument

for monitoring the abundance of phytoplankton and small zooplankton, known as

the FlowCAM (Flow Cytometer And Microscope) [70] (Figure 3.1). The FlowCAM

detects and takes images of micro-organisms from a stream of water siphoned directly

from the ocean. It even has a rudimentary image segmentation capability, used to crop

out individual organisms. The instrument is used by marine biologists to estimate the

population sizes of different plankton species. In particular, scientists are interested

in detecting an influx of potentially harmful organisms.
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The FlowCAM is capable of generating thousands of images in a matter of hours.

Currently, manually identifying the organisms appearing in all these images is a daunt-

ing task for the marine biologists, requiring a huge number of man-hours. Clearly,

there is a strong motivation for trying to automate this process.

Classifying FlowCAM images automatically is difficult due to ambiguity resulting

from high in-class variability. In our experiments we have used a data set acquired

by the FlowCAM, containing 980 images of 13 taxonomic categories (Table 3.1).

The images have been labeled by consensus of a committee of experts at Bigelow

Laboratory for Ocean Sciences, in Boothbay Harbor, Maine. The organisms depicted

in the images flow by the camera in a stream of water turning and tumbling, resulting

in arbitrary 3D orientations. Furthermore, some organisms are capable of articulated

motion, changing their shape significantly, while others form chains of cells that can

bend and twist.

Another difficulty peculiar to FlowCAM images is low magnification. The goal of

the marine biologists is to detect and identify as many organisms in a sample of water

as possible. In order to achieve that, the magnification of the microscope has to be

small (4x) to increase the field of view. Because of the low magnification much of the

potentially descriminative high-frequency texture information is lost. Also, it is more

likely than not that the organism is out of focus, losing even more high-frequency

detail.

To illustrate the quality of FlowCAM images, Figure 3.2 shows one of them next

to an image used in the ADIAC project [18]. We have also compared the quality

of FlowCAM images to those used in ADIAC more objectively, by computing the

power spectra of 100 images of each type, and averaging them. Figure 3.3 shows the

average spectra for the ADIAC and the FlowCAM images. Clearly we can see that

the FlowCAM images contain very little high-frequency information as compared to

the ADIAC ones, which indicates a general lack of detail.
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Figure 3.2. Left: image from ADIAC project. Right: image from the FlowCAM

Figure 3.3. Left: average power spectrum of ADIAC images. Right: average power
spectrum of FlowCAM images
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Table 3.1. Taxonomic Categories of Images in the FlowCAM Data Set

Category Name images example

Unknown 39

Centric diatoms 26

Pennate diatoms 124

Dinoflagellates 29

Ciliates 179

Unidentified cell 32

Non-cell 113

Mesodium 71

Laboea 30

Skeletonema 169

Thallasiosira 86

Thallasionema cf. 23

Pseudo-nitzschia 61
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Figure 3.4. The Video Plankton Recorder.

3.4 Video Plankton Recorder Images

Another type of image, that typically feature larger zooplankton, is produced by

an instrument called the Video Plankton Recorder (VPR) [3] (Figure 3.4). The VPR

consists of a single video camera and synchronized strobe that captures images of the

contents of a small volume of water at a rate of 60 Hz. In this study the volume was

5.1 milliliters per image, and the field of view was 17.5 mm wide x 11.7 mm tall x 25

mm deep. Images were transmitted to the surface via fiber-optic cable. Then time-

code from a GPS system was added, and the data were archived on S-VHS videotape.

In the lab, the video signal was routed through a PC-based image processing system

(Imaging Technologies) that digitized each image and located objects meeting user-

defined criteria for size, brightness, and focus. Objects meeting these criteria (termed

regions of interest or ROIs) were cropped and written to disk as individual TIFF files.

A subset of images was manually classified into categories that ranged from individual

species to broader groups, depending on how many characteristics indicative of a

particular category, such as eyes or appendages, were present.

For our experiments we have used a data set of 1826 images of 14 taxonomic

categories acquired by VPR. The categories are listed in Table 3.2. The images were

labeled by a single expert, Dr. Mark Benfield at Louisiana State University.
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Table 3.2. Taxonomic Categories of Images in the VPR Data Set

Category Name Taxonomic Group images example

Calanus finmarchicus copepod species 132

Chaetognaths zooplankton phylum 86

Conchoecia Ostracods ostracod genus 100

Ctenophores zooplankton phylum 34

Euphausiids zooplankton order 131

Hyperiid Amphipods zooplankton suborder 68

Pteropods zooplankton order 142

Diatom Rods phytoplankton class 97

Larvaceans zooplankton class 133

Small Copepods zooplankton class 433

Unidentified Cladocerans zooplankton order 108

Siphonophores zooplankton suborder 202

Euchaeta norvegica copepod species 81

developmental stage of

Siphonulae zooplankton suborder 78
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Just as the FlowCAM, the VPR photographs organisms in situ, which means that

they can be at any orientation relative to the camera. Also, the larger zooplankton,

which are a primary target of the VPR, are often capable of a wider range of ar-

ticulated motion than the microscopic plants imaged by the FlowCAM, resulting in

greater variation in shape. On the other hand, because the organisms in the VPR

images are larger, more texture detail is often visible.

An issue peculiar to the data produced by the VPR is that the video frames

are interlaced, i. e. each frame only contains half of the scan lines, either the even

or the odd ones. Because both the camera and the organisms are moving rapidly,

reconstituting a complete scene from adjacent frames is impossible. Therefore the

images have to be interpolated to recover the proper aspect ratio.

3.5 Summary

In this chapter we have described our application domain. We have discussed the

importance of studying plankton, and we have described the two data sets that we

used in detail. In the subsequent chapters we present algorithms for classifying the

images in these data sets using local features without explicit correspondences.
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CHAPTER 4

MODELING DISTRIBUTIONS OF LOCAL FEATURES

In this chapter we discuss a method of classifying images represented by unordered

sets or bags of local features by estimating the probability distribution of features

in each class. We estimate the probability density function over the space of real-

valued local feature non-parametrically for each category, and construct a maximum

likelihood classifier. We first review non-parametric density estimation, and then

discuss how this technique is adapted for bags of features.

4.1 Non-parametric Density Estimation

The maximum likelihood classifier is a very well-understood generative classifi-

cation technique [19]. If the instances are points in a space, and the probability

distribution for each class over this space is known, then one can simply look up the

likelihood of the instance given each class, and output the label corresponding to the

maximum likelihood.

Unfortunately the probability distributions are usually not known in advance,

and need to be estimated from sample data. The methods for doing that can be

categorized as parametric or non-parametric. A parametric method assumes that the

distribution has a particular shape, described by a parametric family of functions such

as Gaussian or Poisson, and estimates its parameters from data. This is a reasonable

approach when one knows in advance the shape that the distribution may have.

In our case we know very little about the shape that a distribution of the local

features may have. In such cases the probability density function (PDF) of a set of
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Figure 4.1. Example of non-parametric density estimation.

samples can be estimated non-parametrically by a normalized sum of kernels placed

at every sample. The most common choice of a kernel is a Gaussian centered at the

sample, but other functions such as the Laplacian are sometimes used. An example

is shown in Figure 4.1. This method is also called kernel density estimation (KDE).

An important question to ask at this point is: “What should the bandwidth of

each of the kernels be?” Figure 4.2 shows how the bandwidth of the kernels affects

the resulting PDF. There are several approaches for dealing with this issue. Below

we describe three of them.

In the first method, called Parzen windows [19], the kernels are restricted to be

isotropic and to have identical bandwidth. Thus, there is only one parameter, the

bandwidth σ, which is set to maximize the leave-one-out mean log likelihood of every

sample.

The second method, called k-nearest neighbor estimation, sets the bandwidth of

every kernel to be the distance to its kth nearest neighbor. This approach is much

faster than Parzen windows because no optimization is required. Also, under this
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Figure 4.2. What should the bandwidth be?

scheme every kernel will have a different bandwidth, which may be advantageous if the

space has areas of high and low density. However, while the Parzen windows method

is fully automatic, for the KNN approach the parameter k must be set manually.

The third approach is the simplest of the three, but often does not perform as well.

It is called the “rule-of-thumb” [66]. In this approach all of the kernels are identical,

but not necessarily isotropic. The bandwidth hk of each kernel along a dimension k

is defined as

hk = σkn
−1/(d+4), (4.1)

where σk is the variance of the data along the dimension k, n is the number of samples,

and d is the number of dimensions.
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4.2 Adapting Kernel Density Estimation to Bags of Features

Our task is to classify images that are represented by sets of vectors, rather than

individual points. In order to do that we make a simplifying assumption that an

instance is a set of local features drawn independently from a distribution specific to

each class. This assumption allows us to compute the likelihood of an image as the

product of the likelihoods of its constituent local features, which we can get from the

kernel density estimate. Equivalently, the log likelihood of an image is the sum of the

log likelihoods of its local features.

We start by pooling local features from training images of a particular class [45].

Then the kernel density estimate for each class is computed using Parzen windows.

Let C = {C1, C2, ..., Cn} be the set of image classes. Let Q = {q1, q2, ..., qm} be a

query image to be classified, and qi ∈ Q be its constituent local feature. Then the

log likelihood of the query given each class is given by

log p(Q|Ci) =
m
∑

j=1

log p(qj|Ci), (4.2)

where p(qj|Ci) is given by the PDF of Ci. Then the posterior probabilities for each

class p(Ci|Q) can be easily computed by normalizing the likelihoods:

p(Ci|Q) =
p(Q|Ci)

∑n
j=1 p(Q|Cj)

. (4.3)

Then the maximum likelihood label of Q is given by

argmax
i

p(Ci|Q) (4.4)

This approach essentially estimates the marginal distribution of images over the

local features. This is advantageous because we have many more local features than

we have images, i. e. the distribution is estimated from a larger number of samples.

The disadvantage is the feature independence assumption that allows us to do that

40



does not hold in reality. One reason for this comes from the very nature of multiscale

local features. Finer scale features give rise to those at the coarser scale, and thus the

occurrence of the latter can be predicted from the occurrence of the former. Another

reason is that local features may correspond to parts of the organism that are not

statistically independent, such as a head and a tail.

4.3 Experimental Results

The Maximum likelihood classifier has been tested on the FlowCAM and the VPR

image sets. In both cases the images were represented as sets of SIFT features. One

problem with computing a kernel density estimate over the space of SIFT descriptors

is the fact that the space has 128 dimensions. For the number of samples that we have,

this dimensionality is extremely high. This is especially evident in the case of the

FlowCAM data set, which consists of only 982 images, and each image yields very few

SIFT features (often fewer than 10). In order to be able to compute a better estimate

we first reduce the dimensionality of the local features using principal components

analysis (PCA). This preprocessing step may not be necessary for a lower-dimensional

feature descriptor. It also may not be need for data sets that either consist of many

more images than either FlowCAM or VPR, or contain larger images that produce

many more local features.

We present classification accuracy obtained using 10-fold cross-validation for 2, 4,

8, and 16 principal components. The error bars depict one standard deviation of the

accuracies of individual folds. Results for the FlowCAM data set are shown in Figure

4.3, and results for the VPR data set are presented in Figure 4.4. Notice that on

average the best performance of the classifier on both data sets was achieved when

the dimensionality of the SIFT features was reduced from 128 to 8. These results are

compared to those of other classifiers for bags of features in Section 5.5.
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Figure 4.3. Accuracy for the Maximum likelihood classifier on the FlowCAM data
set.
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Figure 4.4. Accuracy for the Maximum likelihood classifier on the VPR data set.

42



CHAPTER 5

CLASSIFICATION USING PAIRWISE IMAGE

COMPARISONS

In Chapter 4 we have described a maximum likelihood classifier for bags of features

that estimates the distribution of local features in a class of images. Alternatively,

one could devise a distance measure between a pair of images and use that for classi-

fication (e. g. by using a nearest neighbor classifier). Unlike the Maximum Likelihod

classifier, which assumes statistical independence of the local features in an image, a

classifier using pairwise comparisons between images would take into account feature

co-occurrence. Such a classifier would be implicitly estimating the joint distribution

of images over the local features. The disadvantage here is that the number of images

is orders of magnitude fewer than the number of local features in them. In other

words, the trade-off here is between estimating the marginal distribution from more

samples and estimating the joint distribution from fewer samples.

In this chapter we introduce the Hausdorff distance [32], which we use to compare

pairs of images (Section 5.1). We then discuss four classification techniques that are

based on pairwise comparisons between instances and have been adapted for bags of

features. The first is a simple k-nearest neighbor classifier [19] (Section 5.2). The

second is a support vector machine classifier that uses a kernel designed to operate on

bags of features [5] (Section 5.3). The last two techniques embed bags of features into

a space using pairwise distances between them, after which many standard classifiers

can be used (Section 5.4). One of them is Multidimensional scaling [11], a well-

known embedding method. The other is a less known but a more efficient method

called Dissimilarity Space [54].
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5.1 Hausdorff Distance

The one-sided Hausdorff distance [32] between two sets of points in a space is

defined as

h(A,B) = max
a∈A

min
b∈B

||a− b||, (5.1)

where A and B are the two sets of points, and || · || is a norm for points in the sets.

In general, under this formulation h(A,B) 6= h(B,A). To address this, the bi-

directional Hausdorff distance [32] is defined as

ĥ(A,B) = max(h(A,B), h(B,A)). (5.2)

The Hausdorff distance is often used for object detection, where an image is repre-

sented by a set of edge points. In our case, we use the Hausdorff distance to compare

sets of points in a high-dimensional feature space, rather than in the image plane.

Specifically, we use a variation of the Hausdorff distance, known as the Hausdorff

average, defined as

ha(A,B) =

∑

a∈A minb∈B ‖a− b‖

|A|
, (5.3)

where |A| is the cardinality of A. It can also be made bi-directional by taking the

maximum of ha(A,B) and ha(B,A) as in Equation 5.2. The Hausdorff average

has been shown to be the most stable variation of the Hausdorff distance under

image distortions [68]. However, unlike the original Hausdorff distance, the Hausdorff

average is not guaranteed to satisfy the triangle inequality, and therefore is not a

metric. This fact becomes relevant in Section 5.4, where we use the Hausdorff distance

to embed bags of features into a Euclidean space.
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5.2 K-Nearest Neighbor Classifier

Given a distance measure between two bags of features, the simplest classification

technique that can be used is k-nearest neighbor (KNN), which is Bayes-optimal in

the limit. One disadvantage of this technique is that a query instance needs to be

compared to every training instance. This is especially problematic in the case of bags

of features, because computing the Hausdorff distance between two sets is expensive.

The complexity is O(nm) where n and m are the cardinalities of the two sets of points

respectively.

5.2.1 KNN Performance

Performance of the KNN classifier on the FlowCAM and VPR data sets is shown

in the graphs in Figures 5.1 and 5.2 respectively. We have tested setting k to 1, 5, 10,

15, and 20 for both data sets. The graphs show results for k = 10 for the FlowCAM

data set, and k = 15 for the VPR data set, which on average have performed the best

respectively.

The dimensionality of the SIFT descriptors has been reduced using PCA to 2,

4, 8, 16, 32, and 64 dimensions for the FlowCAM data set, and to 2, 4, 8, and 16

dimensions for the VPR data set. The accuracy of the KNN classifier for each of

these cases has been computed using 10-fold cross-validation. The error bars depict

one standard deviation of the accuracies of the individual folds. In both graphs the

X-axes are scaled for the purpose of display.

Notice that for the FlowCAM data set the difference in the accuracy of the KNN

classifier between the original and reduce SIFT descriptors is not significant. However,

for the VPR data set reducing the dimensionality of the descriptors actually improves

the accuracy. The accuracy of the KNN classifier using the original 128-dimensional

SIFT descriptors is 44.40 ± 2.43%. Reducing the dimensionality of the descriptors to

45



2 4 6 8 16 32 64 128
52

54

56

58

60

62

64

66

68

Dimensionality

A
cc

ur
ac

y 
%

Figure 5.1. Accuracy for the KNN classifier using the Hausdorff Average on the
FlowCAM data set with k = 10. Results are shown for the original 128-dimensional
SIFT features, and for features whose dimensionality has been reduced to 64, 32, 16,
8, 4, and 2 dimensions via PCA.

8 via PCA resulted in the accuracy of 49.07 ± 3.14%. The difference between these

two results is statistically significant according to a two-sample t-test (p < 0.0016).

5.3 Support Vector Machines for Bags of Features

In this section we discuss classifying images represented by bags of features with

support vector machine (SVM) classifiers. To use an SVM one needs to define a

kernel, which is a function of two instances that is equivalent to an inner product in

some high-dimensional space. While a kernel is not the same as a distance, it is still a

pairwise comparison, which in the case of bags of features takes into account feature

co-occurrence. Therefore the discussion of SVM classifiers for bags of features is

included here. Furthermore, the kernels that are discussed are related to the Hausdorff

distance (Section 5.1).
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Figure 5.2. Accuracy for the KNN classifier using the Hausdorff Average on the
VPR data set with k = 15. Results are shown for the original 128-dimensional SIFT
features, and for features whose dimensionality has been reduced to 16, 8, 4, and 2
dimensions via PCA.

We start with a brief overview of SVMs. Then we present several support vector

machine kernels for bags of features investigated by Blaschko et al. [5]. Specifically,

Blaschko et al. [5] present experiments on the VPR data set for three different

kernels: the matching kernel, the expected likelihood kernel, and the hybrid kernel

combining several of the characteristics of the other two. We describe these kernels in

some detail. We also present the experimental results for SVM classifiers using these

kernels on the FlowCAM data set.
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5.3.1 Support Vector Machines

Support Vector Machines (SVMs) are classifiers that separate two class problems1

with a maximum margin hyperplane [65]. In the case that the data are not separable,

we introduce slack variables, ξi, to allow for some incorrectly classified exemplars.

The procedure for computing the maximizing hyperplane defined by

〈w, x〉+ b = 0 (5.4)

where w ∈ R
D, b ∈ R, is given below. We define x1, x2, . . . xm to be the exemplars,

and yi ∈ {−1, 1} the class labels, and w is given in terms of its expansion

w =
m
∑

i=1

αiyiΦ(xi) (5.5)

where Φ(xi) is the projection of xi via the kernel trick 2. The value of w is obtained

by solving the following quadratic programming problem:

minimizeξ,w,b
1
2
〈w,w〉+ C 1

m

∑m
i=1 ξi (5.6)

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . ,m (5.7)

and ξi ≥ 0, i = 1, . . . ,m (5.8)

We can in fact maximize the Lagrangian dual, in which the ξi disappear:

1The extension to multi-class problems is explored in many works, many of which are independent
of the Support Vector Framework. Some approaches include one vs. rest classification [62], pairwise
classification [42], and error correcting output codes [16].

2The kernel is a function defined on the original space, which is equivalent to an inner product
in a higher dimensional space. The kernel trick refers to computing the inner product in a higher
dimensional space implicitly, by evaluating the kernel in the original space.
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maximizeα∈Rm

∑m
i=1 αi −

1
2

∑m
i=1

∑m
j=1 αiαjyiyj〈Φ(xi),Φ(xj)〉 (5.9)

subject to 0 ≤ αi ≤
C
m
for all i = 1, . . . ,m, (5.10)

and
∑m

i=1 αiyi = 0. (5.11)

where each αi is a Lagrangian multiplier. The decision function itself can then be

written as a weighted sum of inner products where the weights correspond to the

Lagrangian multipliers

f(x) = sgn(
m
∑

i=1

yiαi〈Φ(x),Φ(xi)〉+ b) (5.12)

For additional details on the formulation of the quadratic programming problem, the

reader is referred to the book by Schölkopf and Smola [65]. Burges also provides an

accessible tutorial introduction to Support Vector Machines [9].

5.3.2 Matching Kernel

The Matching Kernel [78] was proposed to handle images represented by sets of

vectors resulting from computing local image descriptors at interest points. In other

words it was designed for the bags of features representation. The kernel consists

of a minor kernel, which is computed between individual vectors, and a function for

combining the results of the minor kernel evaluations for the entire set. The function

that computes the overall result takes the form

k(I, I ′) =
1

2
[k̂(I, I ′) + k̂(I ′, I)] (5.13)

k̂(I, I ′) =
1

N

N
∑

i=1

max
j=1,...,N ′

φ(xi, x
′
j) (5.14)

where I and I ′ are sets of vectors corresponding to objects, xi and x′
j are individual

vectors in those sets, respectively, N is the number of vectors in I, and φ(xi, x
′
j) is
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the minor kernel. It turns out, however, that the kernel in Equation (5.14) is not

positive definite due to the max operation [20], and so it is not a Mercer kernel [76]

despite the claim in the original paper. Nevertheless, reported results in [78] and [20]

indicate that this technique can be successfully applied to simple object recognition

tasks.

Because the matching kernel is not a Mercer kernel, the quadratic optimization

is not guaranteed to converge. However, its successful application to object recogni-

tion provides empirical evidence that in many cases it does converge. This has led

Boughorbel et al. [6] to propose a probabilistic extension to the Mercer property.

Given a kernel K with a parameter σ that satisfies certain conditions, Boughorbel

et al. derive a bound on the probability that K is positive definite as a function of

σ. Specifically they show that if K is the matching kernel and σ is the bandwidth of

the minor kernel, then the probability that K is positive definite is higher for smaller

σ. Thus the probability that K is positive definite can be bounded arbitrarily by

setting an appropriate threshold for σ. The fact that the matching kernel satisfies

this relaxed Mercer condition explains why it often works in practice.

Thus far we have not discussed what the choice of a minor kernel should be. This

choice is not unconstrained, as can be seen by simply choosing the dot product. For

a fixed query point x = {x1, . . . , xn}, φ(x,y), a function of y, is a hyperplane that

passes through the origin. Intuitively, we would like maxj=1,...,N ′ φ(xi, x
′
j) to select a

value for j that corresponds to a vector close to xi in that space. Use of a simple dot

product, however, will favor points that are infinitely far from xi.

If we instead modify Equation (5.14) to be

k̂(I, I ′) =
1

N

N
∑

i=1

φ(xi, x
′
j∗i
) (5.15)

where
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j∗i = arg min
j=1,...,N ′

‖xi − x′
j‖ (5.16)

we constrain ourselves to matching points that are similar in the sense that they are

close together (we can in fact use a metric in an induced space [8]). However, this

technique is implicitly dependent on the choice of the origin, and the result of averag-

ing dot products is difficult to interpret from the perspective of spatial similarity of

a set of vectors . Therefore, the minor kernel itself must act as a similarity measure

in Equation (5.14). Choosing a radially symmetric kernel that is monotonically de-

creasing as ‖xi−x′
j‖ results in Equations (5.14) and (5.15) being equivalent. One can

think of the result of its evaluation as the likelihood that the two vectors match each

other in that space. Notice also that there is a clear similarity between Equations

(5.15) and (5.16) and the Hausdorff average (Section 5.1).

A simple dot product is an appropriate candidate for the minor kernel in the

special case where the data are normalized, which is indeed true for the SIFT features

[47]. In this case, the data are constrained to lie on a hyper-sphere and the dot

product is the cosine of the angle between two vectors. The cosine of the angle is

radially symmetric with respect to a point on the manifold, and we arrive at a radially

symmetric, monotonically decreasing similarity metric, though we have little control

over the scale at which we compare the data. Without such a geometric constraint,

we must take greater care with our choice of kernel.

To interpret explicitly the minor kernel as representing the likelihood of a match

between vectors, the kernel takes the shape of a density over the space. If we rely on

the feature space, or a transformation of that space, to separate the data, then we

require that the kernel have density inversely proportional to a distance metric in the

space. A Gaussian RBF kernel is, to a constant factor, a density over the original

feature space that has density inversely proportional to distance.
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5.3.3 Expected Likelihood Kernel

A general approach for generating a kernel between distributions over observations

was outlined by Jebara, Kondor, and Howard [35]. They propose probability product

kernels of the form

k(p, p′) =

∫

p(x)ρp′(x)ρdx (5.17)

where p and p′ are distributions that represent the two objects and ρ is a parameter

of the family of kernels.

In this section we focus on a special case called the expected likelihood kernel

[34, 35]

k(p, p′) =

∫

p(x)p′(x)dx = Ep[p
′(x)] = Ep′ [p(x)] (5.18)

This kernel is unbounded, and favors distributions with low entropy.

Jebara, Kondor, and Howard derive closed form solutions for many parametric

forms for p(x) [35]. Of particular interest is that of the Gaussian distribution.

∫

RD

p(x)ρp′(x)ρdx =
1

((2π)(2ρ−1)ρ)D/2

|Σ†|1/2

|Σ|ρ/2|Σ′|ρ/2
e−

ρ
2
(µTΣ−1µ+µ′TΣ′−1µ′−µ†TΣ†µ†)

(5.19)

where

Σ† = (Σ−1 + Σ′−1)−1 (5.20)

and

µ† = Σ−1µ+ Σ′−1µ′ (5.21)

The expected likelihood kernel applied to two spherical Gaussians of equal variance

is equal to

k(p, p′) =
1

(4πσ2)D/2
e−‖µ′−µ‖2/(4σ2), (5.22)
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which is equivalent to the Gaussian RBF kernel to a constant factor [35]. Although

one might argue that the expressive capacity of single Gaussians is overly restrictive3,

we see below that the kernel between Gaussians is important in the derivation of more

sophisticated results.

Recall non-parametric density estimation from Chapter 4. If we estimate p(x)

using the Parzen window method and a Gaussian kernel, and then apply the expected

likelihood kernel to it, we achieve the result

k(p, p′) =

∫

(

1

N

N
∑

i=1

φ(xi, x)

)

·

(

1

N ′

N ′
∑

j=1

φ(x′
j, x)

)

dx (5.23)

where φ(xi, x) is the Gaussian kernel. Rearranging terms in Equation (5.23) we arrive

at

k(p, p′) =
1

N

1

N ′

N
∑

i=1

N ′
∑

j=1

∫

φ(xi, x) · φ(x
′
j, x)dx (5.24)

Since the inner integral is simply the expected likelihood kernel between Gaussians,

the end result is

k(p, p′) =
1

N

1

N ′

1

(4πσ2)D/2

N
∑

i=1

N ′
∑

j=1

e−‖x′
j−xi‖

2/(4σ2) (5.25)

when the Gaussians are isotropic and of equal variance [5].

5.3.4 Hybrid Kernel

The expected likelihood kernel between kernel density estimations has a very

similar form to the matching kernel with a Gaussian RBF as the minor kernel (Equa-

tions (5.13) and (5.25)). Aside from a constant factor, the only difference is that

the matching kernel sums the contribution only from the closest match via the max

operation, while the expected likelihood kernel between kernel density estimations

3For the more restrictive formulation in Equation (5.22) we have no more information than were
we to represent the data by their centroid.
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sums over every contribution. Density estimation uses a lower variance statistic than

the matching kernel and there are no discontinuities introduced as a result of the max

operation.

The similarity between the matching kernel and the expected likelihood kernel

gives rise to the question of what statistics are appropriate to allow maximum dis-

crimination while maintaining robustness. Robust estimators are those that make use

of some subset or weighting of the data to reduce the effect of outliers [26, 30]. One

of the most simple techniques for selecting a subset of the data is via order statistics.

By including only a certain quantile of data, outliers will fall in the excluded range

and the estimator will not be affected. The max operation in the matching kernel

is an order statistic that excludes every data point except the closest match. This

is an optimal choice in the event that it is assumed that each local feature in one

image matches exactly one feature in the other. Alternative statistics include hybrid

approaches in which the tradeoff between an estimator based on all the data, or on

just a portion of the data, are controlled by a parameter of the estimator [30].

In terms of discrimination, we wish to select an estimator that is robust to values

that give little or misleading information about class membership. In general, we wish

to choose a statistic that gives a higher similarity value to objects of the same class

and a lower similarity value to objects of different classes. This is a data-dependent

choice, and without further assumptions about the distribution from which the data

are drawn, the statistic used must be chosen experimentally.

There is a certain amount of robustness built into any system that calculates

statistics over Gaussian kernel evaluations. Because

lim
|xi−x′

j |→∞
φ(xi, x

′
j) = 0, (5.26)

54



outliers will tend to have a limited effect on the summation. However, experimental

results show that the choice of estimator does have a significant effect on classification

performance.

Because of the superior performance of the matching kernel over the expected

likelihood kernel, we define a class of kernels parametrized by the order statistics as

follows

kβ(I, I
′) =

1

2
[k̂β(I, I

′) + k̂β(I
′, I)] (5.27)

k̂β(I, I
′) =

1

N

1

⌈βN ′⌉

N
∑

i=1

∑

{x′
j |φ(xi,x′

j)≥φ(xi,I′β)}

φ(xi, x
′
j) (5.28)

where φ(xi, I
′
β) is the ⌈βN

′⌉th largest kernel evaluation ranging over the set of vectors,

I ′. β represents the fraction of kernel evaluations that will be averaged in the inner

loop of the double summation. In the case that β = 1
N ′ this is equivalent to the

matching kernel, and in the case that β = 1 the kernel becomes equivalent to the

expected likelihood kernel [5].

5.3.5 Performance of SVMs on Bags of Features

The accuracy of the SVM classifiers using the matching kernel and the expected

likelihood kernel on the FlowCAM data set is presented in Figure 5.3. Results of the

same classifiers on the VPR data sets [5] are shown in Figure 5.4. Notice that on the

VPR data set the expected likelihood kernel has performed significantly worse than

the matching kernel. On the other hand, both kernels have yielded statistically the

same results for a wide range of bandwidth on the FlowCAM data.

This phenomenon can be explained by the fact that VPR images are larger and

contain orders of magnitude more SIFT features than the FlowCAM images. Recall

the discussion in Section 5.3.4 about the differences between the matching kernel and

the expected likelihood kernel. The matching kernel sums the contributions from the

closest match via the max operation, while the expected likelihood sums over every

contribution. When the number of local features in an image is very small, however,
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Figure 5.3. Bandwidth, σ, is plotted vs. accuracy on the FlowCAM data set. Results
are shown for the matching kernel, and for the expected likelihood kernel.

summing up all the contributions does not differ significantly from taking only the

closest match. The difference in accuracy for the VPR and the FlowCAM data sets

reflect precisely that.

The results for the hybrid kernel on the VPR data set [5] are shown in Figure 5.5.

Notice that it outperforms the matching kernel. On the other hand it does not make

sense to test the hybrid kernel on the FlowCAM images because the number of local

features per image is so small.

5.4 Embedding Bags of Features

In Sections 5.2 and 5.3 we have discussed KNN and SVM classifiers that oper-

ate on bags of features directly. However both of those techniques have a significant

drawback: evaluating a kernel or a distance between a pair of bags of features is

very expensive computationally. The complexity is quadratic in the number of lo-

cal features in an image, which needs to be large for accurate classification. The
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shown for the matching kernel, and for the expected likelihood kernel [5].
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Figure 5.5. Fraction of minor kernel evaluations, β, is plotted vs. accuracy on the
VPR data set. The kernel is computed as in equation 5.27.
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KNN classifier requires the query to be compared to every training instance, and the

SVM requires pairwise comparisons between all training instances during the training

phase.

We have mentioned before that method relying on pairwise comparisons between

bags of features are implicitly modeling their joint distribution over the space of local

features. However, the dimensionality of this space is unknown, and is likely to be

very high. Recall also that the number of features is much larger than the number

of images. In other words, the number of samples is likely too small relative to the

dimensionality of the space to compute an accurate estimate.

An alternative that addresses both of these issues is to use an embedding to map

bags of features onto points in a space. First of all, this would give us a larger

set of classifiers from which to choose, instead of only KNN and SVM. There are

many classification techniques (e.g. decision trees) that operate on vectors, but cannot

be adapted easily to using only pairwise distances. Secondly, comparing vectors is

significantly faster than comparing bags of features. Finally, an embedding can be

used to reduce the dimensionality of the problem, which may give us a better estimate

of the joint distribution and improve accuracy. In the following sections we discuss

two embedding methods: Multidimensional scaling and Dissimilarity spaces.

5.4.1 Multidimensional Scaling

Multidimensional Scaling (MDS) [11] is a family of algorithms for embedding data

represented by pairwise distances or dissimilarities. Given a set of objects, the matrix

of pairwise distances or dissimilarities is computed, and used as input for an MDS

algorithm. The algorithm assigns coordinates to every object in a space of given

dimensionality, trying to preserve the pairwise distances between them.

There are two main approaches to MDS. One is called Classical MDS, which treats

the pairwise dissimilarities as Euclidean distances, and solves for the coordinates
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analytically. This is done using the eigen decomposition of the inner product matrix,

which is in turn computed from the dissimilarity matrix. Classical MDS can also

handle non-metric dissimilarities to some extent. The other approach, called Non-

classical MDS or Non-metric MDS generates a configuration of points corresponding

to the objects by iteratively minimizing a “stress” function. In both cases, however,

dissimilarities between all pairs of instances must be computed beforehand, which is

computationally expensive, especially in the case the Hausdorff distance.

Non-classical MDS is slower, but it can be extended to produce a configuration of

points that preserves the rank orderings rather than the actual distances by defining

an appropriate stress function. This can sometimes be useful in cases when the

dissimilarity measure is non-metric and the dimensionality of the embedding space

is low. Non-classical MDS is often used for the purpose of data visualization, which

restricts the dimensionality of the embedding space to 2 or 3.

In our case, the dissimilarity measure is the Hausdorff average, which is non-

metric. However, the embedding space is by no means restricted to 2 or 3 dimensions.

For our experiments we have used classical MDS, which we describe in greater detail

below.

Let O be the set of n objects. Let δrs be the dissimilarity between objects r and

s, where r, s ∈ O. The objective of Classical MDS is to map the objects in O onto

points in p-dimensional Euclidean space, such that

drs ≈ δrs, (5.29)

where drs is the Euclidean distance between the points representing the objects r and

s.

Let xr be the coordinates of a point in p-dimensional Euclidean space representing

object r. Then the Euclidean distance between points r and s is given by
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d2rs = (xr − xs)
T (xr − xs) (5.30)

It can also be expressed as

d2rs = xT
r xr + xT

s xs + 2xT
r xs (5.31)

Equation 5.31 leads to the following expression forB, the matrix of inner products:

B = −
1

2
HDH, (5.32)

whereD is a matrix of squared Euclidean distances d2rs, andH is the centering matrix,

H = I− n−111T , (5.33)

with 1 being a column vector of n ones [11]. Matrix B is necessary, because

XXT = B (5.34)

where X is the p× n coordinate matrix, which is what we are trying to compute. To

recover X, we first write B in terms of its eigen decomposition:

B = VΛVT , (5.35)

where Λ is the diagonal matrix of eigenvalues and V is the matrix of corresponding

eigenvectors. The inner product matrix B is positive semi-definite and of rank p,

which means that it has p positive eigenvalues. Then the coordinate matrix X is

given by

X = VpΛ
1/2
p , (5.36)

where Λ
1/2
p = diag(λ

1/2
1 , ..., λ

1/2
p ), is the diagonal matrix of the p positive eigenvalues,

and Vp is the matrix of the corresponding p eigenvectors. [11].
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If the dissimilarities are indeed metric distances, then the other n− p eigenvalues

are all equal to zero. If the dissimilarities are non-metric, then some of the eigenvalues

will be negative. For the purpose of the embedding one can simply ignore them [11].

Furthermore, instead of using all p positive eigenvalues one could use only the first

k, resulting in a lower dimensional embedding. Notice that the dimensions of the

embedding are decorrelated, and if the dissimilarities are Euclidean then classical

MDS is equivalent to the principal components analysis.

5.4.2 Dissimilarity Spaces

Dissimilarity space embedding [54, 55] is a technique in which each object in a set

is represented by a vector of distances to k prototype or reference objects from the

same set. Thus, each object is projected into a k-dimensional space. This method is

useful for dealing with a set of objects for which we can compute pairwise distances,

but have no notion of a coordinate system.

This representation can be viewed as a special case of the Lipshitz embedding

[31] in which an element a set S is represented by a vector of distances to k subsets

of S. A distance between an object o and a set A ⊂ S is defined as the distance

between o and its nearest neighbor in A. Thus, a dissimilarity space representation

is a Lipshitz embedding in which the subsets are singletons. Related variants of

the Lipshitz embedding have been proposed [21, 75] that deal exclusively with the

problem of efficient nearest neighbor search, rather than with general classification.

In our actual problem we do not know what the dimensionality of our original

space is, and the distance measure we use, the Hausdorff average, is a non-metric.

However, for the purpose of illustration let us consider the idealized case when the

original space is a 2D Euclidean plane (Figure 5.6(a)). It is easy to see that in that

case any point can be localized exactly given its distances to three prototype points,

whose coordinates are known, and which are not co-linear. Let P1, P2, and P3 be
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Figure 5.6. 2D Example.
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prototype points. Let the coordinates of Pi be (xi, yi). Let Q be a point in the plane

with coordinates (x, y). Then if Q is projected into a dissimilarity space defined by

P1, P2, and P3, its ith coordinate in the dissimilarity space is computed as follows:

d2i = (x− xi)
2 + (y − yi)

2 (5.37)

= x2 − 2xix+ y2 − 2yiy + x2
i + y2i , (5.38)

where i = 1, 2, 3. In other words, projecting points from a Euclidean space into

a dissimilarity space is a one-to-one quadratic mapping. For instance, this means

that linearly separable classes become quadratically separable. This analysis can

be generalized for a (k − 1)-dimensional Euclidean space, for which the number of

prototypes must be k.

Notice that any set of k prototypes not lying in the same hyper-plane of dimen-

sionality less than or equal to k − 2 will uniquely identify the position of any other

point up to a translation and a rotation. On the other hand, if a smaller number of

prototypes is chosen, then the mapping from the original space into the dissimilarity

space will not be one-to-one. This means that some points that are far apart in the

original space, may end up close together in the dissimilarity space. It also means

that some sets of prototypes may preserve separability better than others (Figure

5.6(b) and 5.6(c)).

Let us illustrate how the choice of prototypes affects separability if their number is

less than k. In Figure 5.6(a) we see two classes on a 2D plane, perfectly separable by

the straight line x = 0. Figure 5.6(b) shows the resulting dissimilarity space, if points

1 and 2 are chosen as prototypes. Most of the points are still separable, but there is

a small region region of overlap. In Figure 5.6(c) the dissimilarity space was defined

using points 1 and 3. In this case the classes are almost completely separable. In fact,

they would have been perfectly separable if the line connecting the two prototypes
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in the original space were perpendicular to the linear decision boundary. Of course,

they would also have been perfectly separable if we used three prototypes instead of

two.

Unfortunately, in our case we do not know the dimensionality of the space in which

the bags of features reside. Furthermore, that space is not metric, because the Haus-

dorff average does not obey the triangle inequality. Therefore, we do not know ahead

of time how many prototypes we need. In practice, the number of prototypes repre-

sents a trade-off between the classification accuracy and the computational cost. For

example, it can be optimized using the “wrapper method” 4. This is similar to using

many other dimensionality reduction techniques, such as the principal components

analysis, for which it is often not clear how many dimensions to keep.

An important difference between MDS and dissimilarity space the computational

efficiency. MDS requires computing the full dissimilarity matrix, which takes time

O(n2) in the number of instances. Dissimilarity space only requires every instance

to be compared to a fixed number of prototypes, which is significantly smaller than

the total number of instance. In other words, computing the dissimilarity space

representation takes linear time in the number of instances, which is a significant

advantage considering that computing the Hausdorff average between a pair of bags

of features is quite expensive.

Another advantage of dissimilarity space embedding over MDS is that using MDS

for classification is problematic. MDS would need to embed both training and test

instances simultaneously, which means that all the test instances need to be available

at the time of training. It also means that the training set and the test set would

not be independent. Extensions to MDS have been proposed that can incrementally

4The wrapper method refers to optimizing the parameters of a classification algorithm using
cross-validation on the training set.
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add points to a set that has been previously embedded [11]. However, using such a

scheme would require additional computation during testing.

The Dissimilarity space embedding, on the other hand is inherently incremental.

Once the set of prototypes is selected new instances can be easily embedded at any

moment, in constant time. Furthermore, dissimilarity space embedding can be used

to devise an any-time classification algorithm. One can first train several classifiers

using different size sets of prototypes, thus creating several dissimilarity spaces with

different dimensionalities. Then, depending on how much time is available, a query

instance is embedded into a dissimilarity space of an appropriate dimensionality, and

then classified by the corresponding classifier thus trading accuracy for speed.

5.4.3 Classification Performance in Dissimilarity Space

We have performed classification experiments in dissimilarity space. An SVM

classifier was used with a linear kernel. The results for the FlowCAM images are

shown in Figure 5.7, and the results for the VPR images are shown in Figure 5.8.

We chose 10 random sets of 2, 8, 16, 32, 64, 128, and 256 prototypes, and ran 10-

fold cross-validation for each of the sets. The accuracies shown in the graph are the

averages over all 10 folds for all 10 sets of prototypes. The error bars, which depict

one standard deviation of the individual folds for all 10 sets of prototypes, indicate

that the accuracy of this method is not very sensitive to the choice of prototypes.

5.5 Comparison of Classifiers for Bags of Features

5.5.1 Accuracy

Table 5.1 and Table 5.2 summarize performance of the classifiers for bags of fea-

tures that we have discussed on the FlowCAM and the VPR data sets respectively.

Recall that the accuracy of these algorithms has been sampled using different param-

eter settings, such as the number of dimensions to which the SIFT descriptors were
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Figure 5.7. Accuracy for the SVM classifier in dissimilarity space on the FlowCAM
data set.
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Figure 5.8. Accuracy for the SVM classifier in dissimilarity space on the VPR data
set.
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Table 5.1. Accuracy of Classifiers for Bags of Features for FlowCAM Data Set

Method Accuracy %

Maximum Likelihood 59.49 ± 6.36
KNN 62.45 ± 4.27
SVM with Matching Kernel 58.26 ± 2.13
SVM in Dissimilarity Space 64.29 ± 4.40

reduced via PCA or the number of prototypes used to construct a dissimilarity space.

For each method, the tables show its best accuracy for the parameters that have been

tried.

On the FlowCAM data set an SVM operating on the dissimilarity space has per-

formed better than an SVM using the matching kernel operating on bags of features

directly. The statistical significance in this and all subsequent cases was determined

by using a two sample t-test. In this case it resulted in p < 0.0219. However there

was no significant difference in performance between an SVM in a dissimilarity space

and a simple KNN classifier (p < 0.1874).

The situation with the VPR data set is very different. The two approaches that

use embedding have performed significantly better than all the others. The statistical

significance of the difference in performance between an SVM classifier operating on

the dissimilarity space and an SVM using the hybrid kernel operating on the bags

of features directly was also determined by performing a two sample t-test resulting

in p < 0.0041. In this case an SVM classifier in an embedding space produced by

Multidimensional scaling has performed the best, with an SVM in Dissimilarity space

a close second. The difference in accuracy between the two winners is not statistically

significant (p < 0.1971).

5.5.2 Computational Complexity

Aside from classification accuracy, the computational efficiency of the methods

is an important consideration. From this point of view using the dissimilarity space
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Table 5.2. Accuracy of Classifiers for Bags of Features for VPR Data Set

Method Accuracy %

Maximum Likelihood 54.84 ± 3.59
KNN 49.84 ± 3.85
SVM with Hybrid Kernel 56.60 ± 2.80
SVM in Dissimilarity Space 62.77 ± 3.67

embedding is the best approach. We now examine the computational complexity of

every method to show why that is the case.

• The Maximum likelihood classifier requires a very expensive training phase, in

which the bandwidth of the kernel for the non-parametric density estimate is

optimized. The complexity of that is quadratic in the total number of local

features in all the images in the training set. In addition, during classification,

every feature in the query needs to be compared to every feature in the training

set.

• The k-nearest neighbor classifier requires no training at all. However, during

classification, the query must be compared to every training instance. In other

words, the complexity of the classification is the same as that for the Maximum

likelihood classifier.

• The training of SVM classifier using a kernel operating directly on bags of fea-

tures, such as the matching kernel, is also expensive. Its complexity is quadratic

in the number of training instances. Also computing a kernel between two in-

stances is quadratic in the number of features in each of the instances. How-

ever, the classification phase of this classifier is more efficient than that of the

Maximum likelihood classifier, because the kernel only needs to be computed

between the query and the support vectors, rather than between the query and

all training instances.
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Table 5.3. Computational Complexity of Classifiers for Bags of Features

Method Training Complexity Classification Complexity
in the Size of Training Set in the Size of Training Set

Maximum Likelihood Quadratic Linear
KNN Constant Linear
SVM on Bags of Features Quadratic Linear or better
Dissimilarity Space Linear Constant

• Dissimilarity Space embedding offers the same advantage of converting the bags

of features into vectors as MDS. However, as we have already mentioned, it is

significantly more efficient. The number of prototypes is chosen ahead of time,

and is therefore constant. Thus the complexity of embedding the training in-

stances is linear. Furthermore, embedding each query instance takes a constant

time in the size of the training set, because it only needs to be compared to the

prototypes.

The computational complexity of the training and classification phases of the

classifiers is summarized in Table 5.3. Note that the classification complexity of

an SVM operating directly on the bags of features is listed as “Linear or better”,

because the kernel only needs to be computed between the query and the support

vectors, whose number is usually smaller than the total number of training instances.

However, for some kernels the number of the support vectors may actually grow with

the number of training instances, and in the worst case it will grow linearly. Note

also that the complexity for the classification phase of the MDS approach is not

listed, because all the query instances are embedded at the same time as the training

instances. From this table we see that from the computational efficiency point of view

using the dissimilarity space embedding to classify bags of features is preferable.
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5.5.3 Theoretical Soundness

It is worth noting that using an SVM classifier on in the dissimilarity space is

preferable from the theoretical point of view to using an SVM directly on the bags

of features via the matching or the hybrid kernel. We have already mentioned in

Section 5.3.2 that the matching kernel is non-Mercer, and consequently neither is the

hybrid kernel. While the matching kernel has been shown to satisfy the probabilistic

Mercer condition [6], meaning that the convex optimization has a high probability of

converging to the global minimum, the convergence is not guaranteed. On the other

hand, if one were to use an SVM in a Euclidean embedding space, then there would

be a number of standard Mercer kernels from which to choose (e. g. polynomial, RBF,

etc.). For such kernels the convex optimization is guaranteed to converge to the global

minimum.
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CHAPTER 6

COMBINING BAGS OF FEATURES WITH FEATURE

VECTORS

Despite the advantages of bags of features, feature vectors are still useful, espe-

cially in applications where at least a rough segmentation of the object of interest

is available. Due to the fundamental difference in how the two representations are

computed, we expect that they would provide different kinds of information. For

example, while the bags of features describe texture, they differ from global texture

descriptors because the support over which texture is computed varies. Furthermore,

local features do not capture shape information, so there is even more reason to ex-

pect that shape descriptors would capture a different kind of information about the

object.

We expect classifiers that use bags of features will commit errors that differ from

those of classifiers based on feature vectors [45]. Thus a classification system that

made use of both representations would likely perform better than a classifier based

on either type alone. In this chapter we first explore approaches to image classification

that use feature vectors. We then discuss three methods that attempt to combine both

representations into a single classification system, and compare their performance.

6.1 Feature Vector Representation of Images

In this work, we define a feature vector simply as a fixed size collection of ordered

scalar values representing an image. The most important aspect of this definition is

that components of a feature vector are directly comparable from image to image.
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Feature vectors provide a convenient and compact representation that is compatible

with many standard classification techniques.

This convenience may come at a cost, however. In particular, if an image mea-

surement represents a property that is not easily measurable in every image, then

the value of a particular component may be meaningless in some images. For ex-

ample, a scalar value representing the eccentricity of a plankton is not at all robust

to major occlusions of the organism. In particular, because our images are captured

automatically by a camera and often suffer major occlusions, shape features may be

meaningless for a considerable portion of our images. This problem is especially evi-

dent in the VPR image set. Nevertheless, on average there is still valuable information

contained in these features.

6.1.1 Segmentation.

Most of the features we compute require a figure-ground segmentation of the object

of interest. Fortunately, in our data sets an image often does contain a single object,

although sometimes several organisms or particles are present in a single image. We

have also found that a simple global bimodal segmentation is usually effective for

separating the organism from the background, which tends to be significantly brighter

than the object in the FlowCAM images, and darker than the object in the VPR

images [4, 45]. We use expectation-maximization (EM) to fit two Gaussians to the

histogram of gray values for a given image [14]. The Bayesian decision boundary

between the two Gaussians defines the cut point between foreground and background.

Subsequently, morphological hole filling [71] is used to capture the stray pixels inside

the object that have intensity similar to that of the background. Figure 6.1 shows a

sample image (Figure 6.1(a)) and the corresponding segmentation (Figure 6.1(b)).

6.1.2 Feature Vectors for the FlowCAM Data Set

We computed the following 225 features for the FlowCAM data set:
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(a) Image (b) Segmentation

Figure 6.1. An example of image segmentation.

• Simple Shape: The 8 features in this category include, Area, Perimeter, Com-

pactness, Eigenratio, Eccentricity, Standard deviation of area across connected

components, Convexity, and Rectangularity.

• Moment Invariants: These 7 features are the logs of first seven moment invari-

ants as proposed by Hu. The moments are computed over the binary image, so

they are shape descriptors.

• Granulometric Features: To compute the granulometric features [48] a series of

morphological erosions and dilations with structure elements of different size

are preformed. Then the differences in area between the object before and after

the erosion or dilation is recorded. We used four window sizes: 3 × 3, 5 × 5,

7 × 7, and 9 × 9, and two types of structure elements: the square and the

diamond. This resulted in 16 granulometric features.

• Moments of Intensity Histogram: The 5 features here include mean, standard

deviation, skewness, and kurtosis of the histogram of gray scale values and the

entropy of the normalized histogram.

• Local Binary Patterns are gray-scale and rotation invariant texture operators [53].

Local binary patterns are computed from P > 1 image pixels, where each sam-

pled image point p is calculated at a radius R(R > 0) according to the formula
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(−R sin(2πp/P ), R cos(2πp/P )). Each pixel in the image then lies at the cen-

ter of a circle of gray value samples. The intensity values of the samples are

thresholded by the value at the center, and are encoded into a binary num-

ber. These codes are accumulated into a histogram, which is normalized by the

object’s size, and is treated as a feature vector. The segmentation is used to

mask contributions to the histogram to only those pixels interior to the cell.

In these experiments, we calculated local binary patterns for R = {1, 2, 3} and

P = 8 ∗R. This resulted in 54 features.

• Co-occurrence Features: These 140 texture measures have been derived from

co-occurrence matrices. The entry (i, j) of the co-occurrence matrix Pdxdy(i, j)

is the number of occurrences of the pair of gray levels i and j at horizontal step

dx and vertical step dy pixels. In our work, we calculate the energy, inertia,

entropy, and homogeneity of the co-occurrence matrices [28].

6.1.3 Feature Vectors for the VPR Data Set

For the VPR data set we have used a total of 179 features.

• Simple Shape features: area, perimeter, and compactness (perimeter squared

over area). These 3 features were computed from the segmentation.

• Intensity Mean and Standard Deviation.

• Local Binary Patterns. Same 54 features as for the FlowCAM data set.

• Shape Index Histograms are histograms computed using the isophote and the

flowline curvatures of the intensity surface [60]. The total number of elements

in this descriptor is 120.

We emphasize that the LBP and shape index histograms are logical components

of a feature vector. Note that while the bags of features also capture texture mea-

surements of the image, they are computed at specific interest points which may be
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different for each image. LBPs and shape index histograms, on the other hand, are

computed in a consistent manner across images so that every element of the resulting

feature vector has the same meaning in each image. That is, the LBPs and shape

index histograms are used to measure the same properties of each organism.

6.2 Stacking

Ensemble methods are learning algorithms that have been shown to improve per-

formance by combining the outputs of multiple component classifiers. Ensemble meth-

ods for classification have been shown to have better accuracy than the component

classifiers if the component classifiers are accurate and diverse [15]. An accurate clas-

sifier is one that outperforms random guessing, and diverse classifiers are those that

commit independent errors. Even if the errors are not entirely independent using an

ensemble can lead to an improvement in accuracy. One of the main areas of ensemble

research is how to induce independence between the component classifiers. Indepen-

dence of errors can be achieved by manipulating the training set, manipulating the

feature set, or injecting randomness in the learning algorithm.

It is reasonable to expect that in general the bags of features and the feature

vectors are likely to capture different types of information contained in images. If

that is true, then classifiers using the two types of features respectively are likely to

commit independent errors. To illustrate this point consider the confusion matrices

showing the performance for an SVM classifier that uses feature vectors and the

Maximum likelihood classifier that uses bags of features on VPR image set (Tables

6.1 and 6.2). By simply comparing the matrices we see that the two classifiers commit

different errors that are likely to be independent.

In Section 6.5 we show the accuracy of methods that use both representations

on the FlowCAM and the VPR data sets. These methods achieve an improvement

on the VPR data set compared to using each representation alone, supporting our
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Table 6.1. Confusion matrix for SVM with feature vectors on VPR data set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 21 5 3 1 1 2 0 1 2 96 0 0 0 1
2 4 33 0 0 6 3 0 1 3 30 0 5 1 0
3 3 2 22 0 0 0 11 1 1 54 3 0 1 2
4 3 2 0 10 8 1 0 0 1 2 0 7 0 0
5 1 4 0 2 94 2 0 0 0 5 0 10 13 0
6 1 2 1 0 11 4 1 0 0 39 1 1 7 0
7 0 3 11 0 0 1 29 0 3 70 21 0 1 3
8 3 3 2 0 0 0 0 83 2 1 1 1 0 1
9 5 0 1 2 2 0 3 0 89 24 3 1 0 3
10 12 11 10 0 1 2 21 3 6 339 16 0 4 8
11 0 0 3 0 0 0 16 1 2 18 67 0 0 1
12 1 13 1 5 11 0 1 6 3 5 0 155 1 0
13 3 0 0 0 19 5 0 0 0 23 0 1 30 0
14 4 2 2 0 0 0 2 1 17 33 5 1 1 10

expectation of error independence. However, on the FlowCAM data set combining the

representations produced no significant improvement, implying that in that particular

case the errors were not independent. The reason for that is the peculiarity of the

data set, which consists of very small images. As a result local features essentially

capture the same information as the global texture descriptors (Section 6.5).

Many ensemble techniques use a fixed strategy for combining the outputs of their

component classifiers, such as simple majority vote or a weighted vote. We call this

strategy fixed, because it is decided upon ahead of time. On the other hand, an

ensemble method called stacked generalization or stacking [81] uses another classifier

to generalize over the space of outputs of the component classifiers (Figure 6.2). In

this case the component classifiers are called the base-level classifiers, and the “meta-

classifier” is called the top-level classifier, forming a two-level hierarchy. Thus, instead

of using a pre-determined function to combine the outputs of the base-level classifiers,

this function is learned by the top-level classifier.

Boosting [24] is another widely used ensemble technique in which each subsequent

classifier is trained on the instances that are likely to be misclassified by the previous
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Table 6.2. Confusion matrix for the Maximum likelihood classifier for bags of fea-
tures on VPR data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 18 0 0 0 17 0 0 0 0 41 0 56 1 0
2 2 13 0 0 8 0 1 0 1 8 0 50 1 1
3 1 0 47 2 4 0 7 0 7 24 0 7 0 0
4 0 0 0 0 15 1 0 0 0 2 0 16 0 0
5 0 0 0 0 87 0 0 0 0 2 0 39 2 0
6 1 0 1 0 23 6 0 0 0 12 1 20 4 0
7 3 0 10 0 6 0 74 0 4 27 2 10 3 2
8 0 0 0 0 0 0 0 89 0 0 0 8 0 0
9 4 0 0 0 6 1 3 0 57 29 3 24 0 6
10 7 1 5 1 29 2 14 0 3 274 0 79 16 0
11 1 0 1 0 0 0 3 0 1 12 88 1 0 1
12 0 0 0 0 7 0 0 21 0 1 0 173 0 0
13 0 0 0 0 42 0 0 0 0 3 0 28 8 0
14 1 1 1 0 3 0 0 0 8 21 1 28 0 14

base level
classifiersfeatures

classifier
top level

labelinstance

label

label

label

final

Figure 6.2. Stacking.
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classifiers. In other words, boosting manipulates the training sets of the component

classifiers to induce the independence of errors. In our case, however, we expect

that the fact that the component classifiers use different feature types is sufficient to

achieve the independence of errors. This implies that manipulating the training sets,

which adds computational cost during the training phase, is necessary, and stacking

is preferable to boosting.

We discuss here two main variations of stacking. In the first, the input to the

top-level classifier is a concatenation of class labels produced by each of the base-level

classifiers. In the second variation, each base-level classifier outputs a posterior distri-

bution over class labels, rather than a single label. Distributions from the base-level

classifiers are concatenated and used as input to the top-level classifier. Stacking with

probability distributions, in essence, trains on an estimate of classification confidence

from the base-level classifier. Any classifier can be used at the base level if we only

require a single category label, but stacking with probability distributions restricts us

to classifiers that output distributions over class labels. The choice of the top-level

classifier is not restricted in any way.

In our case we use stacking to combine bags of features and feature vectors, and

thus we only have two base-level classifiers (Figure 6.3) [45]. We use the Maximum

likelihood classifier for the bags of features (Chapter 4), which naturally outputs a

posterior distribution. For the feature vectors we use an SVM. Unfortunately most

implementations of SVMs do not by default output a posterior distribution. To get

around this problem we have modified the SVM implementation in the WEKA toolkit

[80] to output the relative confidences for the predicted class labels. While these are

not true posterior probabilities, they nevertheless indicate the SVM’s confidence in

its predictions. We then use another SVM as the top-level classifier.

The performance of stacking on FlowCAM and VPR data sets is shown in Figures

6.4 and 6.5 respectively. In our experiments we trained the Maximum likelihood
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Figure 6.3. Using Stacking to Combine Bags of Features and Feature Vectors.

classifier on the bags of SIFT features whose dimensionality was reduced to 2, 4, 8,

and 16 dimensions via PCA, just as in Section 4.3. Each of the resulting Maximum

likelihood classifiers was combined with an SVM using the feature vectors via stacking,

and the corresponding accuracies are shown in the figures.

For the FlowCAM data set using stacking actually resulted in a performance worse

on average than that of using the feature vectors alone. The accuracy achieved by

stacking was 71.63 ± 4.04% (Table 6.3), while the accuracy of the SVM using the

feature vectors was 72.87 ± 3.42% [4]. The difference is not statistically significant

(p < 0.821), so we can conclude that in this case stacking produced no improvement.

On the other hand, for the VPR data set stacking yielded a significant improve-

ment in accuracy compared to the base-level classifiers. The accuracy of stacking was

67.34 ± 3.22% [45] compared to the best accuracy using the bags of features alone

(56.60 ± 2.80% using an SVM with the hybrid kernel [5]), and the accuracy using the

feature vectors (52.1 ± 3% [45]). The improvement over the SVM with the hybrid

kernel is statistically significant (p < 2.57× 10−7).
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Figure 6.4. Stacking results on FlowCAM data set.
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Figure 6.5. Stacking results on VPR data set
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6.3 Combination of Kernels

Blaschko et al. [5] propose a different method for combining the feature vectors

and the bags of features. They present a support vector machine classifier that

operates on both representations simultaneously. They utilize the fact that the set of

positive definite kernels is closed under addition and multiplication. In other words

the sum of two positive definite kernels is a positive definite kernel, and so is the

product.

Blaschko et al. [5] have experimented with several different combinations of kernels

for bags of features (Section 5.3) with a Gaussian RBF kernel operating on the feature

vectors. They have achieved the best result using a polynomial combination of kernels:

kpoly(x1, x2) = (k1(x1, x2) + (1− α)) · (k2(x1, x2) + α) , (6.1)

where k1 is a kernel for bags of features, k2 is a kernel for feature vectors, and α

is a parameter that controls the relative contribution of each kernel.

Recall that when we combined the two representations via stacking, the base-level

classifiers that used the bags of features and the feature vectors respectively were

trained separately. Each classifier was trained to achieve the best possible accuracy

on its own, which does not necessarily yield the best accuracy for the combination.

On the other hand, Blaschko et al. combine both representations in a single SVM

via a combination of kernels. Thus one classifier is trained using both representations

simultaneously attempting to achieve the best overall accuracy directly.

The results for this approach are show in Figures 6.6 and 6.7 for the FlowCAM

and the VPR image sets respectively. The accuracy is plotted as a function of the

bandwidth of the RBF kernel for the feature vector, and the bandwidth of the minor

kernel of the matching kernel for the bags of features. Notice that the accuracy on

the VPR data set appears to be more stable with respect to the parameters than that

for the FlowCAM data set.
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Figure 6.6. Classification accuracies for a polynomial combination of two kernels on
FlowCAM data set.

The highest average accuracy on the FlowCAM images was 74.84 ± 2.68%. This

is not significantly better than the accuracy for an SVM on the feature vectors alone,

which was 72.87 ± 3.42 (p < 0.0611), which leads us to the conclusion that combining

the two representations is not worth the additional computation in the case of the

FlowCAM data set.

On the VPR images the best accuracy for the polynomial combination of kernels

was 71.90 ± 3.2%. This is a significant improvement compared to the best result

achieved by an SVM on bags of features (56.6 ± 2.80% for the hybrid kernel), and

the accuracy of an SVM on feature vectors (52.1 ± 3%). The two-sample t-test

comparing the accuracy for the combination and the SVM on bags of features alone

yielded p < 10−9. The combination of kernels has also resulted in a statistically

significant improvement over stacking (p < 5.3× 10−4).
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Figure 6.7. Classification accuracies for a polynomial combination of two kernels on
VPR data set [5].

6.4 Dissimilarity Space

Embedding bags of features into a space (Section 5.4) also provides an opportunity

to combine them with feature vectors in a very natural fashion. Once bags of features

are represented as vectors, they can be simply concatenated with other features to

form a higher-dimensional feature space. This approach has the same advantage as

the combination of kernels, in that the training occurs using both representations si-

multaneously. However using an embedding also has the advantage of speed resulting

from operating on vectors rather than bags of features.

In our experiments we have concatenated the vector representations of the bags

of features produced by mapping them onto a dissimilarity space with the feature

vectors, and trained an SVM classifier on the resulting space. The results for the

FlowCAM and the VPR image sets are shown in Figures 6.8 and 6.9. The accuracy

is plotted as a function of the dimensionality of the dissimilarity space (the number

of prototypes). The best accuracy on the FlowCAM images was 73.19 ± 3.05%. On
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Figure 6.8. Accuracy of an SVM using the dissimilarity space representation con-
catenated with the feature vector on FlowCAM data set.

the VPR images the best accuracy was 68.25 ± 3.44%. Notice that the accuracy on

the FlowCAM data set does not change with the number of prototypes, suggesting

that the dissimilarity space representation adds no information to the feature vectors.

However on the VPR data set there is a clear trend of the accuracy increasing with

the number of prototypes, indicating that using both the feature vectors and the bags

of features together is beneficial.

6.5 Summary of the Results.

In this section we analyze the relative advantages of methods for combining bags

of features with feature vectors discussed above. All the results for both our data

sets are summarized in Tables 6.3 and 6.4. The rows of the tables are separated into

three groups. The top group are the accuracies for the classifiers operating on bags

of features. The middle group consisting of one row contains the accuracy for the
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Figure 6.9. Accuracy of an SVM using the dissimilarity space representation con-
catenated with the feature vector on VPR data set.

SVM classifier on feature vectors. The bottom group contains the accuracies for the

methods that combine the bags of features and the feature vectors.

For the FlowCAM data set, the difference between different combination methods

is not statistically significant, according to two-sample t-tests. For example the t-test

comparing stacking and the combination of kernels, whose average accuracies differ

the most, resulted in p < 0.548. More importantly, for this data set set the increase

in accuracy resulting from combining the two representations compared to using the

feature vectors alone is not statistically significant. This suggests that combining

the two representations for images that produce very few local features, such as the

FlowCAM images, may not be worth the additional computational cost.

Furthermore, these results seem to indicate that we are observing a “ceiling effect”

on the FlowCAM data set, meaning that we have achieved the best possible accuracy

for these representations. Further improvement probably requires either designing

domain-specific features or changing the labeling scheme. For example, categories
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Table 6.3. Results Summary for FlowCAM Data Set

Method Accuracy %

Maximum Likelihood 59.49 ± 6.36
KNN 62.45 ± 4.27
SVM with Matching Kernel 58.26 ± 2.13
MDS and SVM 63.61 ± 5.48
Dissimilarity Space and SVM 64.29 ± 4.40

SVM on Feature Vectors 72.87 ± 3.42

Stacking 71.63 ± 4.04
Combination of Kernels 74.84 ± 2.68
Diss. Space and Feature Vectors 73.19 ± 3.05

of organisms that are related taxonomically and are similar morphologically can be

collapsed into larger categories.

For the VPR data set, the difference in accuracy between stacking and concatenat-

ing the dissimilarity space representation with the feature vectors was not statistically

significant (p < 0.5858). However, the difference in performance between the con-

catenation and the combination of kernels was statistically significant (p < 0.0243).

While the combination of kernels resulted in a higher accuracy, it is much less effi-

cient than using the dissimilarity space. Recall that the time complexity of training

an SVM directly on the bags of features is O(n2), while the complexity of mapping

the instances onto a dissimilarity space is O(n), where n is the size of the training

set. Given that the absolute difference in the average accuracy of the two methods

on the VPR data set is less than 4%, using the dissimilarity space for its efficiency

may be a reasonable trade-off.

Note also that for the VPR data set using both the bags of features and the feature

vectors results in a significant increase in accuracy. The reason that combining the

two representations worked better for the VPR images than for the FlowCAM images

is that the latter are generally much smaller. The FlowCAM captures photos of very

small organisms at relatively low magnification. As a result many of the organisms
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Table 6.4. Results Summary for VPR Data Set

Method Accuracy %

Maximum Likelihood 54.84 ± 3.59
KNN 49.84 ± 3.85
SVM with Hybrid Kernel 56.60 ± 2.80
MDS and SVM 63.67 ± 3.20
Dissimilarity Space and SVM 62.77 ± 3.67

SVM on Feature Vectors 52.10 ± 3.00

Stacking 67.34 ± 3.22
Combination of Kernels 71.90 ± 3.20
Diss. Space and Feature Vectors 68.25 ± 3.44

have a diameter of less than 50 pixels in the image, and produce very few, or in

some cases even no SIFT features 1. This means that the information captured by

the SIFT descriptors is not very different from that captured by the global texture

descriptors, such as the local binary patterns or the shape index. Therefore adding

the bags of features to the feature vectors does not introduce a sufficient amount of

new information for a significant increase in classification accuracy.

The VPR images and the organisms they depict, on the other hand, are generally

larger. Consequently they often produce hundreds of SIFT features. In this case the

local SIFT descriptors preserve some of the information discarded by the histogram-

based global texture descriptors, such as the local binary patterns and the shape

index. Thus combining the bags of SIFT features and the feature vectors in the case

of the VPR image set has produced a significant improvement in accuracy.

1Approximately 5% of the images in the FlowCAM data set produce no SIFT features. If the
Maximum likelihood classifier is used, then an instance that contains no local features is assigned
a random label, meaning that it is usually classified incorrectly. When we compute the Hausdorff
distance between two sets of local features we define it to be 0 if both sets are empty, and ∞ if one
set is empty and the other is not. In the FlowCAM data set most of the instances that produce no
SIFT features belong to the same category, and are classified correctly by the classifiers using the
pairwise distances.
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CHAPTER 7

CONCLUSIONS

In this dissertation we have discussed two different image representations: bags of

local features and feature vectors. We have also presented several image classification

methods that use the bags of features, and several approaches that combine the two

representations. These methods have been tested on two sets of real images of phyto-

and zoo-plankton. This work is part of an on-going research project to develop

software tools for marine biologists to automate identification of plankton images

collected in situ.

Specifically, the contributions of this work are as follows:

• We have pointed out that computing point correspondences between images is

not necessarily the best paradigm for object class recognition.

• We have proposed the Maximum likelihood classifier for bags of features, which

models the distribution of features in a category of images using non-parametric

density estimation.

• We have proposed to use the Hausdorff distance between bags of features for

pairwise comparison.

• We have proposed to embed a bags of features into a dissimilarity space using

its Hausdorff distance to a set of prototype instances and then train a classifier

in that space. We have shown that the prototypes can be selected randomly,

resulting in a very efficient classification method. The time complexity of the
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training phase that is linear in the size of the training set, and the time com-

plexity of the test phase is constant in the size of the training set.

• We have analyzed the relative advantages of different methods for classifying

images represented with bags of local features. We have concluded that an

SVM classifier on the dissimilarity space is the most efficient approach from

the computational point of view, whose accuracy on our data sets is as high or

higher than that of the other methods.

• We have proposed three methods for combining the bags of features and the

feature vectors into one classification system: stacking, concatenating an em-

bedding of bags of features with feature vectors, and using a combination of

SVM kernels, one computed on an embedding of the bags of features and the

other on the feature vectors.

• We have analyzed the performance of different approaches to combining bags

of features and feature vectors, and we have concluded that the difference in

accuracy among them on our data sets is generally not statistically significant.

• We have also concluded that on the VPR data set combining the two repre-

sentations results in a statistically significant increase in accuracy over using

either representation alone. However, the improvement was not statistically

significant on the FlowCAM images. We believe that the reason for this is the

fact that the FlowCAM images are generally very small and produce very few

local features. As a result the bag of features representation differs little from

a global texture descriptor. Thus, adding the bags of features to the feature

vector introduces little additional information.

• We have concluded that using a combination of SVM kernels, one computed

on an embedding of the bags of features and the other on the feature vectors

89



is the most computationally efficient classification method, whose accuracy on

our images is as high as or better than that of the other methods.

As we have mentioned earlier this work is part of on-going project to automate

labeling of plankton images. However the methods presented in this dissertation are

generic and could be easily applied to other domains. In order to improve our results

on the plankton images it may be necessary to devise domain specific features.

Another future research direction can be to explore unsupervised and semi-supervised

classification algorithms. The FlowCAM and the VPR are capable of producing thou-

sands of images in very short time, and manually labeling enough training images is a

very time-consuming task for the marine biologists. Unsupervised or semi-supervised

methods could significantly reduce this work load.
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tation invariant texture classification with local binary patterns. IEEE PAMI,

24(7):971–987, 2002.

[54] E. Pekalska and R. Duin. Dissimilarity representations allow for building good

classifiers. Pattern Recognition Letters, 23(8):943–956, 2002.

96



[55] E. Pekalska, P. Paclik, and R. Duin. A generalized kernel approach to

dissimilarity-based classification. Journal of Machine Learning Research, Spe-

cial Issue on Kernel Methods, 2(2):175–211, 2002.

[56] J. Piater. Visual Feature Learning. PhD thesis, Department of Computer Science,

UMASS Amherst, 2001.

[57] J. Piater and R. Grupen. Learning appearance features to support robotic ma-

nipulation. In Cognitive Vision Workshop, 2002.

[58] A. Pope. Learning to Recognize Objects in Images: Acquiring and Uising Proba-

bilistic Models of Appearance. PhD thesis, Computer Science Department, Uni-

versity of British Columbia, 1995.

[59] A. Pope and D. Lowe. Learning probabilistic appearance models for object

recognition. In S. Nayar and T. Poggio, editors, Early Visual Learning, pages

67–97. Oxford Universe Press, 1996.

[60] S. Ravela. On Multi-Scale Differential Features and their Representations for Im-

age Retrieval and Recognition. PhD thesis, University of Massachusetts Amherst,

2002.

[61] S. Ravela and A. Hanson. On multi-scale differential features for face recognition.

In Vision Interface, Ottawa, 2001.

[62] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of

Machine Learning Research, 5:101–141, 2004.

[63] J. T. Robinson. The k-d-b-tree: A search structure for large multidimensional

receptive field histograms. Transactions of the Associateion for Computing Ma-

chinery, 1981.

97



[64] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors.

International Journal of Comptuter Vision, 37(2), June 2000.

[65] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization and Beyond. MIT Press, 2002.

[66] D. W. Scott and S. R. Sain. Multi-dimensional density estimation. Data Mining

and Computational Statistics, 23, 2004.

[67] N. Sebe, Q. Tian, E. Loupias, M. Lew, and T. Huang. Evaluation of salient point

techniques. Image and Vision Computing, 21(13-14):1087–1095, December 2003.

[68] M. Shapiro and M. Blaschko. Stability of Hausdorff-based distance measures.

In Proc. of IASTED Visualization, Imaging, and Image Processing, Marbella,

Spain, 2004.

[69] A. Shokoufandeh, I. Marsic, and S. J. Dickinson. View-based object recognition

using saliency maps. Technical report, Deparment of Computer Science, Rutgers

University, 1998.

[70] C. Sieracki, M. Sieracki, and C. Yentsch. An imaging-in-flow system for auto-

mated analysis of marine microplankton. Mar. Ecol. Progr. Ser., 168:285–296,

1998.

[71] P. Soille. Morphological Image Analysis: Principles and Applications. Springer-

Verlag, 1999.

[72] G. Tian, D. Gledhill, D. Taylor, and D. Clarke. Interest points based fast 3d

surface reconstruction. In Computer Graphics and Imaging, 2004.

[73] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proceedings

IEEE Converence on Vision and Pattern Recognition, 1991.

98



[74] S. Ullman. High-Level Vision: Object Recognition and Visual Cognition. MIT

Press, 2000.

[75] J. Vleugels and R. Veltkamp. Efficient image retrieval through vantage objects.

Pattern Recognition, 35(1):69–80, 2002.

[76] V.Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[77] K. N. Walker, T. F. Cootes, and C. J. Taylor. Locating salient object features.

In Proc. of BMVC, 1998.

[78] C. Wallraven, B. Caputo, and A. B. A. Graf. Recognition with local features:

the kernel recipe. In International Conference on Computer Vision, 2003.

[79] A. P. Witkin. Scale-space filtering. In Proc. International Joint Conference on

Artificial Intelligence, 1983.

[80] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools with

Java implementations. Morgan Kaufmann, 2000.

[81] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[82] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for

matching two uncalibrated images through the recovery of the unknown epipolar

geometry. Artificial Intelligence, 78(1), 1995.

99


