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Abstract

Many recognition algorithms depend on careful posi-
tioning of an object into a canonical pose, so the position
of features relative to a fixed coordinate system can be ex-
amined. Currently, this positioning is done either manu-
ally or by training a class-specialized learning algorithm
with samples of the class that have been hand-labeled with
parts or poses. In this paper, we describe a novel method to
achieve this positioning using poorly aligned examples of a
class with no additional labeling. Given a set of unaligned
examplars of a class, such as faces, we automatically build
an alignment mechanism, without any additional labeling of
parts or poses in the data set. Using this alignment mecha-
nism, new members of the class, such as faces resulting from
a face detector, can be precisely aligned for the recognition
process. Our alignment method improves performance on a
face recognition task, both over unaligned images and over
images aligned with a face alignment algorithm specifically
developed for and trained on hand-labeled face images. We
also demonstrate its use on an entirely different class of ob-
Jects (cars), again without providing any information about
parts or pose to the learning algorithm.

1. Introduction

The identification of certain objects classes, such as faces
or cars, can be dramatically improved by first transforming
a detected object into a canonical pose. Such registration
reduces the variability that an identification system or clas-
sifier must contend with in the modeling process. Subse-
quent identification can condition on spatial position for a
detailed analysis of the structure of the object in question.
Thus, many recognition algorithms assume the prior rough
alignment of objects to a canonical pose [1, 7, 15, 17]. In
general, the better this alignment is, the better identifica-
tion results will be. In fact, alignment itself has emerged
as an important sub-problem in the face recognition lit-
erature [18], and a number of systems exist for the de-
tailed alignment of specific categories of objects, such as

faces [3, 4, 5, 6, 12, 19, 20].

We point out that it is frequently much easier to obtain
images that are roughly aligned than those that are precisely
aligned, indicating an important role for automatic align-
ment procedures. For example, images of people can be
taken easily with a motion detector in an indoor environ-
ment, but will result in images that are not precisely aligned.
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Figure 1. Recognition pipeline

Although there exist many individual components to do
both detection and recognition, we believe the absence of a
complete end-to-end system capable of performing recog-
nition from an arbitrary scene is in large part due to the
difficulty in alignment, the middle stage of the recognition
pipeline (Figure 1). Often, the middle stage is ignored, with
the assumption that the detector will perform a rough align-
ment, leading to suboptimal recognition performance.

A system that did attempt to address the middle stage
would suffer from two signficant drawbacks of current
alignment methods:

e They are typically designed or trained for a single class

of objects, such as faces.

e They require the manual labelling either of specific
features of an object (like the middle of the eye or the
corners of the mouth),' or a description of the pose
(such as orientation and position information).

As a result, these methods require significant additional
effort when applied to a new class of objects. Either they
must be redesigned from scratch, or a new data set must be
collected, identifying specific parts or poses of the new data
set before an alignment system can be built. In contrast,

'Some systems identify more than 80 landmarks per face for 200 to 600
faces [6, 19].



systems for the detection and recognition steps of the recog-
nition pipeline only require simple, discrete labels, such
as object versus non-object or pair match versus pair non-
match, which are straight forward to obtain, making these
systems significantly easier to set up than current systems
for alignment, where even the form of the supervised input
is very often class-dependent.

Some previous work has used detectors capable of re-
turning some information about object rotation, in addition
to position and scale, such as, for faces, [8, 16]. Using the
detected rotation angle, along with the scale and position
of the detected region, one could place each detected object
into a canonical pose. However, so far, these efforts have
only provided very rough alignment due to the lack of preci-
sion in estimating the pose parameters. For example, in [8],
the rotation is only estimated to within 30 degrees, so that
one of 12 rotation-specific detectors can be used. Moreover,
even in the case of frontal faces, position and scale are only
roughly estimated, and, in fact, for face images, we use this
as a starting point and show that a more precise alignment
can be obtained.

More concretely, in this work, we describe a system that,
given a collection of images from a particular class, auto-
matically generates an “alignment machine” for that object
class. The alignment machine, which we call an image fun-
nel, takes as input a poorly aligned example of the class and
returns a well-aligned version of the example. The system is
fully automatic in that it is not necessary to label parts of the
objects or identify their initial poses, or even specify what
constitutes an aligned image through an explicitly labeled
canonical pose, although it is important that the objects be
roughly aligned to begin with. For example, our system
can take a set of images as output by the Viola-Jones face
detector, and return an image funnel which dramatically im-
proves the subsequent alignment of facial images.

(We note that the term alignment has a special meaning
in the face recognition community, where it is often used to
refer to the localization of specific facial features. Here,
because we are using images from a variety of different
classes, we use the term alignment to refer to the rectifica-
tion of a set of objects that places the objects into the same
canonical pose. The purpose of our alignments is not to
identify parts of objects, but rather to improve positioning
for subsequent processing, such as an identification task.)

1.1. Previous Work

The problem of automatic alignment from a set of ex-
amplars has been addressed previously by Learned-Miller’s
congealing procedure [10]. Congealing as traditionally de-
scribed works directly on the pixel values in each image,
minimizing the entropy of each column of pixels (a pixel
stack) through the data set. This procedure works well when
the main source of variability in a pixel value is due to mis-

registration. Congealing has proven to work well on simple
binary handwritten digits [14] and on magnetic resonance
image volumes [11, 21]. These data sets are free of many of
the most vexing types of noise in images. In particular, the
goal of this work was to extend congealing-style methods to
handle real-world image complexity, including phenomena
such as

e complex and variable lighting effects,

e occlusions,

e highly varied foreground objects (for example, for
faces, arising from varying head shape, hair, beards,
glasses, hats, and so forth), and

e highly varied backgrounds.

For example, on a realistic set of face images taken
from news photographs, straight forward implementations
of congealing did not work at all. To make the general
approach of congealing work on this type of complex im-
ages, we needed to define features for congealing that ig-
nore unimportant variability, such as lighting, have a large
capture range, and are not sensitive to the clustering proce-
dure we use to obtain the first two properties. The details of
the extension are developed in Section 3.

Another information theoretic method was previously
proposed by Kim et al. [9]. However, that method solves the
separate problem of computing correspondences between
two highly similar images taken from a stereo pair using
mutual information, whereas our method jointly aligns an
entire set of highly variable images using entropy minimiza-
tion.

We show our system on different classes of images:
frontal faces and rear cars. For faces, we show high quality
results on the Faces in the Wild data set [2], which contains
many different people under different poses and lighting,
on top of complex backgrounds, in contrast to the data sets
on which many other alignment methods are tested, which
contain a limited number of people in front of controlled
backgrounds. We then show similar quality alignment re-
sults on cars, using the same out of the box code as used for
the faces, without the need for any training or labeling.

In addition, we do detailed comparisons of our results
in frontal face rectification with previous work by Zhou et
al. [19]. In particular, we show that face identifiers built us-
ing our rectified images outperform an identifier built using
images that either have not been pre-processed and even ex-
ceeds an identifier built from images aligned using Zhou’s
supervised alignment method.

2. Background

We first review the basics of congealing. Then in Sec-
tion 3 we show how to extend this framework to handle
complex images.
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Figure 2. Schematic illustration of congealing

2.1. Distribution Field

A key concept in congealing is the distribution field.
Let X = {1,2,..., M} be the set containing all possible
feature values at a given pixel. For example, using inten-
sity values as features, for a binary image, M = 2, and
for a greyscale image, M = 256. A distribution field is a
distribution over X at each pixel, so for a binary feature, a
distribution field would be a distribution over {0, 1} at each
pixel in the image.

One can view the distribution field as a generative inde-
pendent pixel model of images by placing a random vari-
able X; at each pixel location 7. An image then consists of
a draw from the alphabet X for each X; according to the
distribution over X at the ¢th pixel of the distribution field.

Another important concept in congealing is the pixel
stack, which consists of the set of values with domain X’
at a specific pixel location across a set of images. Thus, the
empirical distribution at a given pixel of a distribution field
is determined by the pixel stack at that pixel.

Congealing proceeds by iteratively computing the em-
pirical distribution defined by a set of images, then for each
image, choosing a transformation (for example, over the set
of affine transformations) that reduces the entropy of the
distribution field. An important point is that, under an in-
dependent pixel model and uniform distribution over trans-
formations, minimizing the entropy of the distribution field
is equivalent to maximizing the likelihood according to the
distribution field [10].

Therefore, an equivalent formulation of congealing is the
following: compute the empirical distribution field of a set
of images, find the transformation for each image that max-
imizes the likelihood of the image under the transformation
according to the distribution field, then recalculate the dis-
tribution field according to the transformed images, and it-
erate until convergence.

2.2. Image Funnel

Once congealing has been done on a set of images, for
example a training set for a face recognition algorithm,
there is the question of how to align additional images, such

as from a new test set. Theoretically, one could align new
images by inserting them into the training set and re-running
the congealing algorithm on all the images, but a more ef-
ficient technique can be used by keeping the distribution
fields produced at each iteration of congealing [10].

By maintaining the sequence of distribution fields from
each iteration of congealing, one can align a new image by
transforming it, at each iteration, according to the saved dis-
tribution field from the corresponding iteration of the orig-
inal congealing. The sequence of distribution fields begins
at higher entropy as the images are initially unaligned, and
decreases in entropy as the images are iteratively aligned
during congealing. When aligning a new image according
to this sequence of distribution fields, the image is sharp-
ened from the initial “wide” distribution to the final “nar-
row’ distribution, and for this reason we refer to the learned
sequence of distribution fields of the training congealing as
an image funnel, and we will refer to the alignment of a
new image according to the image funnel as funneling to
distinguish it from the original congealing.

Figure 2 illustrates the process of congealing on one di-
mensional binary images. At each iteration, the distribution
field is a function of the set of transformed images, and the
sequence of distribution fields forms an image funnel that
can be later used to align new images.

3. Methodology
3.1. Congealing with SIFT descriptors

We now describe how we have adapted the basic con-
gealing algorithm to work on realistic sets of images. We
consider a sequence of possible choices for the alphabet X
on which to congeal. In particular, we discuss how each
choice improves upon the previous choice, eventually lead-
ing to an appropriate feature choice for congealing on com-
plex images.

In applying congealing to complicated images such as
faces from news photographs, a natural first attempt is to
set the alphabet X over the possible color values at each
pixel. However, the high variation present in color in the
foreground object as well as the variation due to lighting
will cause the distribution field to have high entropy even
under a proper alignment, violating one of the necessary
conditions for congealing to work.

Rather than considering color, one could set X" to be bi-
nary, corresponding to the absence or presence of an edge
at that pixel. However, another necessary condition for con-
gealing to work is that there must be a “basin of attraction”
at each point in the parameter space toward a low entropy
distribution.

For example, consider two binary images a and b of
the number 1, identical except for an z-translation. When
searching over possible transformations to align b to a, un-



less the considered transformation is close enough to the
exact displacement to cause b and a to overlap, the trans-
formation will not cause any change in the entropy of the
resulting distribution field.

Another way of viewing the problem is that, when X
is over edge values, there will be plateaus in the objective
function that congealing is minimizing, corresponding to
neighborhoods of transformations that do not cause changes
in the amount of edge overlap between images, creating
many local minima problems in the optimization.

Therefore, rather than simply taking the edge values, in-
stead, to generate a basin of attraction, one could integrate
the edge values over a window for each pixel. To do this,
we calculate the SIFT descriptor [13] over an 8x8 window
for each pixel. This gives the desired property, since if a
section of one pixel’s window shares similar structure with
a section of another pixel’s window (need not be the cor-
responding section), then the SIFT descriptors will also be
similar. In addition, using the SIFT descriptor gives addi-
tional robustness to lighting.

Congealing directly with the SIFT descriptors has its
own difficulties, as each SIFT descriptor is a 32 dimensional
vector in our implementation, which is too large of a space
to estimate entropy without an extremely large amount of
data. Instead, we compute the SIFT descriptors for each
pixel of each image in the set, and then cluster these us-
ing kmeans to produce a small set of clusters (in our ex-
periments, we have been using 12 clusters), and let X be
over the possible clusters. In other words, the distribution
fields consist of distributions over the possible clusters at
each pixel.

After clustering, rather than assigning a cluster for each
pixel, we instead do a soft assignment of cluster values for
each pixel. Congealing with hard assignments of pixels to
clusters would force each pixel to take one of a small num-
ber of cluster values, leading to local plateaus in the op-
timization landscape. For example, in the simpliest case,
doing a hard assignment with two clusters would lead to the
same local minima problems as discussed before with edge
values.

This problem of local minima was borne out by prelim-
inary experiments we ran using hard cluster assignments,
where we found that the congealing algorithm would termi-
nate early without significantly altering the initial alignment
of any of the images.

To get around this problem, we model the pixel’s SIFT
descriptors as being generated from a mixture of Gaussians
model, with one Gaussian centered at each cluster center
and o;’s for each cluster that maximize the likelihood of
the labeling. Then, for each pixel, we have a multinomial
distribution with size equal to the number of clusters, where
the probability of an outcome i is equal to the probability
that the pixel belongs to cluster i. So, instead of having an

intensity value at each pixel, as in traditional congealing,
we have a vector of probabilities at each pixel.

The idea of treating each pixel as a mixture of clusters is
motivated by the analogy to gray pixels in the binary image
case. In the binary image case, a gray pixel is interpreted
as being a mixture of underlying black and white “subpix-
els” [10]. In the same way, rather than doing a hard assign-
ment of a pixel to one cluster, we treat each pixel as being a
mixture of the underlying clusters.

3.2. Implementation

Following the notation in [10], suppose we have N face
images, each with P pixels. Let 2/ be the multinomial dis-
tribution of the ith pixel in the jth image, xz (k) be the prob-
ability of the kth element of the multinomial distribution in
xz, and let le be the multinomial distribution of the ith
pixel of the jth image under some transformation U7. De-
note the pixel stack {z!', 22", ... 2N} as 2.

In our congealing algorithm, we first compute the empir-
ical distribution field defined by the images under a partic-
ular set of transformations. Define D;(k) as the probability
of the kth element in the distribution at the ith pixel of the
distribution field. Then, D;(k) = + > ; ) , (k). The en-
tropy of a distribution at a particular pixel ¢ is equal to

H(D;) = - Di(k)log, Di(k) (1)
k

Thus, at each iteration in congealing, we wish to mini-
mize the total entropy of the distribution field Zil H(D;).
This is equivalent to finding, for each image, the transfor-
mation that maximizes the log-likelihood of the image with
respect to the distribution field, e.g. the transformation that
maximizes

P
DD @l (k)log Dy(k) )
i=1 k

for a given image j. In our case, this maximization is done
over the transformations defined by the four parameters, z-
translation, y-translation, rotation, and scaling (uniformin x
and y), for each image. In our implementation, we do a hill
climbing step at each iteration that increases the likelihood
with respect to the distribution field at that iteration.

4. Experimental Results
4.1. Alignment on Faces in the Wild

We ran our alignment algorithm on 300 faces selected
randomly from the first 300 clusters of the Faces in the Wild
data set [2]. This data set consists of news photographs
that cover a wide variety of pose, illumination, and back-
ground. We used the Viola-Jones face detector to extract



the faces from the images, and ran the images through the
congealing alignment algorithm. A representative sample
of 50 of the resulting aligned images after congealing are
given in Figure 5. The original images, together with the
corresponding bounding boxes of the final alignments, are
given in Figure 6. We also show animations of images un-
der the transformations at each iteration of congealing on
our project webpage.”

For comparison, we aligned the same set of images us-
ing the Zhou face alignment [19] using their web interface,?
which returns the alignment as a set of connected landmark
points. The results are given in Figure 7, and one can see
that the two alignment methods are comparable, despite
congealing being unsupervised. Both methods do a good
job of finding the correct scale of the face, though in a few
instances the Zhou alignment is thrown off, such as by par-
tial occlusion due to a tennis raquet or confusing the bottom
of the lip as the chin. Both methods also do a good job with
respect to rotation, as is most evident in the first picture of
the sixth row.

4.2. Cars

We also show results on a separate data set of 125 rear
car images, taken from different parking lots with variable
background and lighting. Since our algorithm is fully auto-
matic, we were able to obtain these results using the same
code as with faces without any labeling or training. A rep-
resentative sample of the final aligment bounding boxes are
given in Figure 4. Of the 50 images, only one is a clear
error (6th row, 2nd column), and one is a case where the
algorithm rotated the image in the right direction but not
enough (7th row, 4th column). Of the other 75 images, the
final bounding box captures the correct scale, rotation, and
position of the car, with the exception of one other car where
the algorithm again rotated the image in the right direction
but not sufficiently. We emphasize again that no changes of
any kind were made to the code before running the car ex-
amples; the algorithm ran directly as it did on the faces. We
believe this is a dramatic demonstration of the generality of
this method.

4.3. Improvement in Recognition

In addition, we also tested the performance of a face rec-
ognizer on three different alignment processes. We used a
hyper-feature based recognizier of Jain et al. [7] with 500
randomly selected training pairs and 500 randomly selected
test pairs from the Faces in the Wild data set.

For the baseline of our comparison, we trained and tested
the recognizer with the unaligned face images found by the
Viola-Jones face detector. Next, we examined how aligning

Zhttp://www.cs.umass.edu/ gbhuang/alignment
3http://facealignment.ius.cs.cmu.edu/alignment/webdemo.html

the face images with the Zhou method and with congeal-
ing would affect the results. We used the unaligned im-
ages from the Viola-Jones face detector as input into the
two systems, which, for each image, produce a similarity
transformation used to align that particular image. For the
congealing alignment, we aligned the images by funneling
the output of the Viola-Jones face detector using the image
funnel learned from congealing on the 300 faces above.

We chose to compare against the Zhou alignment algo-
rithm rather than the Berg method presented in [3]. The
Berg algorithm uses support vector machines to detect spe-
cific facial features, such as corners of eyes and tip of nose,
that are then used to align the images to a canonical pose.
Although this method works well for a subset of the im-
ages in their data, they throw out images with low alignment
score, eliminating a large number of faces. While discard-
ing bad alignments is appropriate for their application, for
the purpose of recognition, one cannot discard difficult to
align images.

On the other hand, the Zhou system is designed for de-
tection and face point localization in addition to pose es-
timation, and not specifically to improve classification ac-
curacy. However, it is reasonable to adopt the system for
the purposes of alignment to a fixed coordinate system and
seemed to align faces as well as anything else we found.
We took care to make the comparison fair (by using the de-
fault unaligned image when no face was detected by the
Zhou system and by manually picking the best face when
the Zhou system detected multiple faces for a given image).
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Figure 3. ROC curves and area under curves for recognition. Us-
ing face images aligned with congealing during both training and
testing of a face identifier uniformly improves accuracy, not only
over images directly from the Viola-Jones detector (“unaligned”)
but also on images that have been aligned using the method of
Zhou et al.

The ROC curves for the recognition, as well as the area



under the curves, are given in Figure 3. From this figure, it
is clear that our method, which is completely automated and
requires no labeling of pose or parts, dramatically improves
the results of recognition over the outputs of the Viola-Jones
face detector, and even exceeds the supervised alignment
method of Zhou in performance benefit to recognition.

5. Discussion and Conclusion

In summary, we have presented an unsupervised tech-
nique for jointly aligning images under complex back-
grounds, lighting, and foreground appearance. Our method
obviates hand-labeling hundreds of images while maintain-
ing comparable performance with supervised techniques. In
addition, our method increases the performance of a face
recognizer by precisely aligning the images. Of course, our
method is not completely unsupervised in the sense that
it must be provided with images of objects of a particular
class. However, in many scenarios, such images can be au-
tomatically acquired, especially since detailed alignment is
not a requirement.

One extension of our work we are pursuing is to align im-
ages in a two part process. First, all the images are aligned
using congealing, then the quality of the alignment is es-
timated for each image so that poorly aligned images can
be re-aligned in a separate second stage. The quality of the
alignment is estimated from the likelihood of each image
under its alignment according to the final distribution field.

Another possible extension is to use the multi-view face
detector in [8] to first separate face images into three sep-
arate categories: frontal, left profile, and right profile, and
then attempt to align each category of faces individually.
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