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Abstract

In [9], we introduced a linear statistical model of joint color
changes in images due to variation in lighting and certain
non-geometric camera parameters. We did this by measur-
ing the mappings of colors in one image of a scene to colors
in another image of the same scene under different lighting
conditions.

In this paper, we extend our model in several ways and
examine its applicability to several important problems in
machine vision. The extensions to our model include incor-
porating a model of image noise and a prior on the color
flows used to explain a particular image difference. In ad-
dition, we increase the flexibility of our model by allowing
color flow coefficients to vary according to a low order poly-
nomial over the image. This allows us to better fit smoothly
varying lighting conditions as well as curved surfaces with-
out endowing our model with too much capacity. The prob-
lems we explore include shadow removal and detection as
well as inference of scene geometry.

1. Introduction
In previous work [9], we introduced color flows, a linear sta-
tistical model of joint color changes in images due to vari-
ation in lighting. Color flows are meant to model not only
common global lighting changes (which have an approx-
imately linear effect on scene radiance), but also various
non-linear camera effects such as aperture settings, trans-
ducer dynamics, and gain correction.

A color flow is a vector field in color space; each vector
in the vector field starts at one color and ends at another.
Since a vector field can be considered an element of a vec-
tor space, an ensemble of color flows can be studied us-
ing common statistical methods such as clustering and prin-
cipal components analysis. We showed that the principal
components of the ensemble of color flows (the basis fields
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that represented the directions of greatest variation in the
ensemble) corresponded to common modes of color varia-
tion in images due to lighting changes, such as “brightness”,
“warmth”, and “contrast”. We then demonstrated how color
flows can be used to create a simple model for the variabil-
ity in images of a new object using only a single example of
that object.

In Sections 2 and 3, we define the color flow model and
how it is obtained from observations in a particular envi-
ronment. Then in Section 4, we discuss image matching
with color flows, incorporating an image noise model and
a prior on color flows. We examine the applicability of our
model to several important problems in machine vision in
Section 5. The problems we explore include shadow re-
moval and detection as well as inference of scene geome-
try. We also describe how we increase the flexibility of our
model by allowing color flow coefficients to vary according
to a low order polynomial over the image. This allows us
to better fit smoothly varying lighting conditions as well as
curved surfaces without endowing our model with too much
capacity. We discuss the advantages and disadvantages of
our model with respect to these problems and relationships
to other lighting invariance models such as [2, 1, 12].

2. Color Flows
In the following, let C = {(r, g, b)T ∈ R

3 : 0 ≤ r ≤
255, 0 ≤ g ≤ 255, 0 ≤ b ≤ 255} be the set of all possi-
ble observable image color 3-vectors. Let the vector-valued
color of an image pixel p be denoted by c(p) ∈ C.

Suppose we are given two N -pixel RGB color images
I1 and I2 of the same scene taken under two different
sets of photic parameters θ1 and θ2 (the images are reg-
istered). Each pair of corresponding image pixels pk

1
and

pk
2
, 1 ≤ k ≤ N , in the two images represents a mapping

c(pk
1
) 7→ c(pk

2
). That is, it tells us how a particular pixel’s

color changed from image I1 to image I2. This single-color
mapping is conveniently represented simply by the vector
difference between the two pixel colors:

d(pk
1
, pk

2
) = c(pk

2
) − c(pk

1
). (1)

By computing N of these vector differences (one for each
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pair of pixels) and placing each vector difference at the
point c(pk

1
) in the color space C, we have created a vec-

tor field that is defined at all points in C for which there are
colors in image I1.

That is, we are defining a vector field Φ′ over C via

Φ′(c(pk
1
)) = d(pk

1
, pk

2
), 1 ≤ k ≤ N. (2)

This can be visualized as a collection of N arrows in color
space, each arrow going from a source color to a destina-
tion color based on the photic parameter change θ1 7→ θ2.
We call this vector field Φ′ a partially observed color flow
(see Figure 1a). The “partially observed” indicates that the
vector field is only defined at the particular color points that
happen to be in image I1.

To obtain a full color flow, i.e. a vector field Φ defined
at all points in C, we merely interpolate between the val-
ues of the partially observed color flow as discussed in our
previous paper (Figure 1b). Our interpolation scheme [9]
is defined so that a color point with only a single nearby
observed neighbor will inherit a flow vector that is nearly
parallel to that neighbor’s flow vector. The idea is that if a
particular color, under a photic parameter change θ1 7→ θ2,
is observed to get a little bit darker and a little bit bluer, for
example, then its neighbors in color space are also defined
to exhibit this behavior.

We have thus outlined a procedure for using a pair of
corresponding images I = (I1, I2) to generate a full color
flow. We will write for brevity Φ = Φ(I) to designate the
flow generated from the image pair I.

2.1 Data Collection

Our aim was to capture the structure in color flow space by
observing real-world data in an unsupervised fashion. To do
this, we gathered data as follows. A large color palette (ap-
proximately 1 square meter) was printed on standard non-
glossy plotter paper using every color that could be pro-
duced by our Hewlett Packard DesignJet 650C pen plotter.
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Figure 1: Color flows as vector fields in color space. a. A
(synthetic) partially observed color flow obtained from a
pair of images under different lighting conditions. An ar-
row appears at each point in color space where a color was
observed. b. The interpolated completion of this color flow.

The poster was mounted on a wall in our office so that it was
in the direct line of overhead lights and computer monitors,
but not in the direct light from the single office window. In
this series of experiments, we used the Sony DCR-VX2000
NTSC video camera. Settings were chosen to dynamically
adjust for brightness so that various non-linearities would
be introduced (of course, this makes the camera useful in a
wider range of lighting settings). The camera was aimed at
the poster so that the poster occupied about 95% of the field
of view.

Images of the poster were captured using the video cam-
era under a wide variety of lighting conditions, including
various intervals during sunrise, sunset, at midday, and with
various combinations of office lights and outdoor lighting
(controlled by adjusting blinds). People used the office dur-
ing the acquisition process as well, thus affecting the ambi-
ent lighting conditions. It is important to note that a variety
of non-linear normalization mechanisms built into the cam-
era were operating during this process.

We chose a set of 1000 image pairs Ij = (Ij
1
, Ij

2
), 1 ≤

j ≤ 1000, by randomly and independently selecting indi-
vidual images from the set of raw images. Each image pair
was then used to estimate a full color flow.

3 The Statistics of Color Flows

One of the primary goals of this work is to statistically
model color changes due to lighting variation. Intuitively,
we know that the lighting changes that occur in one setting
are statistically different than lighting changes that occur
in other settings. For example, the most common lighting
changes in many windowless offices are due simply to the
switching on and off of electrical lights. On the other hand,
in a rural outdoor setting, it is the rising and setting of the
sun and changes in the weather that most dramatically affect
the lighting. It seems reasonable to assume that the statis-
tics of color changes in images are a function of the setting
in which those images are acquired.

As discussed previously, the particular properties of the
camera also affect the statistics of color flows. Contrast
flows and other non-linear affects are the result of normal-
izations, saturation, and gain control which are all functions
of the particular camera being used.

To formalize these ideas, we define an environment E =
(pL(·), C) to be a pair consisting of a probability density
pL(·) over lighting conditions and a particular camera make
and model C. The primary purpose of introducing these no-
tions is to emphasize that if color flow statistics are gathered
in one environment and applied in another, the results may
be unreliable. Since our data was gathered in a (windowed)
office environment with a particular camera, the model we
produce represents that particular combination. In other
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words, we would not expect to be able to model outdoor
lighting changes from the office data we gathered.

3.1 Statistics of the Office Environment

Light primarily has an effect when it impinges upon some
surface. Ideally, the environment defined above should in-
clude the angle of the surface being evaluated relative to
the light sources since this variable has a major impact on
the irradiance of the surface. However, here we make the
simplifying assumption that the distribution over lighting
conditions is spatially isotropic. In other words, while at
any given time the light may be coming from a particular
direction, we model it as equally likely to come from any
direction. This isotropic distribution over lighting condi-
tions then induces a distribution over lighting impinging on
a surface. If the distribution of lighting is isotropic, then
the conditional distribution of incident light on the surface
is invariant to the surface orientation. By sampling pairs of
these lighting conditions at different times, we obtain vari-
ous color flows.1

In this work, we assume that the distribution over color
flows in the office environment is a zero-mean Gaussian.2

We perform a principal components analysis to obtain the
dominant modes of variation of the color flows.3 We call
the flows of greatest variation that emerge from this analysis
the “color eigenflows”.

Since color flows are models of image change rather than
images per se, they are perhaps best visualized by being ap-
plied to a particular image. By applying flows to an image
of a flat object photographed in the environment to which
the flow model belongs, we obtain images representing the
variability of that object in the environment. We show the
result of applying the office-based eigenflows to the picture
of a painting in Figure 2. Each column represents one mode
of lighting variation for the original image (at the middle of
each column) as predicted by the “office” color flow model.
Intuitively, the first column represents something similar to
brightness. The second column is clearly a shift from a
blueish tint to a yellowish tint, and may represent changes

1Since we are ultimately interested in image differences created by dif-
ferent lighting conditions, we are interested in the distribution of color
flows induced by comparing images from non-adjacent instants in time.
If we were to build a distribution of flows based on adjacent video frames,
the majority of the probability mass of color flows would be at the “null”
flow.

2Since colors at the boundary of color space (e.g. black, white, fully
saturated red, etc.) will always flow away from the boundary of the color
cube or not at all, the mean color flow cannot be expected to actually be
zero for these colors. However, a non-zero mean flow would imply, for
a Gaussian distribution of flows, that the maximum likelihood flow was
non-zero. This in turn would imply that two identical images were best
explained by some non-zero flow. In order to preserve the “null” flow as
the maximum likelihood flow, we make the zero mean assumption.

3We are also currently investigating a factor analysis model of color
flows.

due to early morning or late afternoon lighting conditions.
The third column can be seen to be a non-linear effect that
increases contrast in one direction, and decreases it in the
other.

Here we emphasize perhaps the most important feature
of our model. Since it is a model of image change rather
than of images, it can be applied to any image. The re-
sulting image set is an induced model of the variability of
the input image under the environment’s changing illumina-
tion. A major limitation is that this applies only to images
of flat surfaces. However, we will investigate below how
color flows can be used in settings with multiple and curved
surfaces.

4 Image matching with color flows

The central aim of this workshop is to recognize objects
across variations in lighting. One approach to solving this
problem is to evaluate the likelihood that two images I1 and
I2 are of the same object under some model of lighting vari-
ability. Here, we assume that two images of the same scene
are affected by lighting changes (modeled by the color flow
distribution) and by additive independent Gaussian noise
(in all three color channels). We then evaluate the likeli-
hood that the difference between two images was caused
by a particular lighting change. A threshold on this likeli-
hood can be used to decide whether images “match” or not,
i.e. whether they are images of the same scene. To evaluate
whether a distribution of color flows can explain the differ-
ence between two images, we must first know how to apply
a color flow to an image. This is similar to the formulation
of handwritten digit matching in [8] where color transfor-
mations take the place of spatial transformations.

4.1 Applying a flow to an image

A flow is applied to an image in the following way. Let c(p)
be the color of a pixel p in the source image, and let Φ be a
color flow. For each pixel in the new image, its color c

′ can
be computed as

c
′(p) = c(p) + αΦ(ĉ(p)), (3)

where α is a scalar multiplier that represents the “quantity
of flow”. ĉ(p) is interpreted to be the color vector closest
to c(p) (in color space) at which Φ has been computed. If
the c

′(p) has components greater than the allowed range of
0–255, then these components must be truncated.

Note that a distribution over flows paired with a new im-
age induces a (usually isomorphic)4 distribution over differ-
ence images and a corresponding distribution over “new”

4As long as the difference image basis vectors are linearly independent,
the set of difference images will be in one-to-one correspondence with the
color flows.
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images obtained from adding the difference images to the
original image.

4.2 Estimating image differences under noise
with color flows

Central to this paper will be the maximum a posteriori
(MAP) estimation of the “color flow” between two images
according to our model. That is, given two images I1 and
I2, we wish to explain the image difference D = I2 − I1

as some combination of changes due to photic parameters
(modeled by eigenflows) and additive pixel-independent
Gaussian image noise.

The difference images {Di} that can be created by ap-
plying each eigenflow Ψi to an original image I are ob-
tained simply by changing each color in an image by the
amount specified in one standard deviation worth of a par-
ticular eigenflow. We notate this as

Di = I(Ψi).

These images will form a basis for the linear space of
difference images that can be created from the eigenflows.
We then seek the MAP solution to the equation

D =
E∑

i=1

γiDi + n,

where E is the number of eigenflows used, and n is pix-
elwise and channelwise independent Gaussian noise in the
image with diagonal covariance Λn. Also, the image differ-
ence D should be viewed as an “unwrapped” vector here of
size 3N , where N is the number of pixels in the image. In
matrix form, we can write this as

D = Dγ + n,

where D is a matrix whose columns are the basis difference
images and γ is the vector of coefficients multiplying the
basis vectors.

To solve this problem, we need Λn, an estimate of the
noise variance, and Λγ , the covariance of the image dif-
ference coefficients. Since, by definition, the difference
images already incorporate a multiplier proportional to the
standard deviation of the color flow in that particular direc-
tion, Λγ is just the identity matrix.

To obtain an estimate of image noise, we looked at the
mean of the magnitude of the difference between a pixel’s
red, green, and blue components between successive im-
ages. This turned out to be about 4.4 on a scale of 0-255
per color channel. This distribution also turned out to be
substantially dependent upon the color in the initial image,
but we assumed isotropic noise in this work, i.e. we set ΛN

to 4.4 × I.

Figure 2: Effects of the first 3 eigenflows. Each image in
the center row is a copy of the original image. Each column
represents ±4 standard deviations of a particular eigenflow.
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With Λγ and ΛN , we can write down a “ridge regres-
sion” style MAP estimate of γ which is

γ̂MAP = (DT Λ−1

N D + Λ−1

γ )−1
DΛ−1

N D (4)

= (DT Λ−1

N D + I)−1
DΛ−1

N D. (5)

Using this estimate of γ, then the color flow estimate of
the difference image becomes

D̂ =
N∑

i=1

γ̂iDi

and the residual “unexplained” part of the image difference
is

∑

x,y

‖D(x, y) − D̂(x, y)‖ (6)

=
∑

x,y

‖I2(x, y) − I1(x, y) − D̂(x, y)‖. (7)

Setting a threshold on this value can then be used to accept
or reject the hypothesis that the two images match. In our
previous paper, we give preliminary comparisons of resid-
ual error obtained by using standard models of color change
and the color flows method. Next we discuss the advantages
and disadvantages of the color flow model relative to other
lighting invariance methods in addressing various problems
related to lighting invariance.

5 Problems related to lighting invari-
ance

5.1 Generative models for images

One of the most generic tasks in the domain of lighting
invariance is to generate arbitrary new views of an object
given some model of the object, while producing as few
“unrealistic” views as possible. There are many models of
lighting invariance which can be used to produce novel im-
ages of an object under new lighting conditions of which
([2, 1, 12, 3, 7]) are just a few. They differ in several re-
spects.

5.1.1 What is being modeled

First, approaches such as Belhumeur et al.’s [2] and Basri
et al.’s [1] differ from our approach in the effects that they
are modelling. In both of these, the goal is to model distant
light sources on Lambertian objects with constant lighting
throughout the scene (with the exception of self-shadows).
There is no attempt to model the distribution of lighting
color, or non-linear camera effects. There is also no attempt
to deal with the effects of nearby light sources, which will

have varying angles of incidence even upon flat surfaces.
While our model also makes the Lambertian assumption,
it differs in that it puts a probability density on lighting
changes for flat surfaces. It is also easily adaptable to ex-
plain the effects of nearby light sources, as we will discuss
in the section on shadows below. However, it does not di-
rectly address self-cast shadows.

5.1.2 Creating the object model

Before lighting invariance models can be used to predict
new images or for other purposes, the model itself must be
created. Current methods vary widely in the complexity of
the task of creating the model. Predicting images of an ob-
ject according to the procedure used in [1] requires that one
have a full 3-D model of the object at hand, and hence either
a special apparatus for each object, or a number of sample
images coupled with an algorithm for constructing such a
3D model.

Many object specific models have been examined, such
as the color eigenface model described in [10]. However,
these models must be trained separately for each class, with
enough images to develop a good estimate of a possibly
high dimensional space. They have no generalization ability
across classes.

Under certain assumptions, as few as 3 images per object
can be used to generate all of the grayscale variations of an
object as described in [2]. We mention again that this model
assumes light sources at infinity and perfect Lambertian re-
flectances.

One of the appealing features of our model is that, while
it is trained on many hundreds or thousands of images, it
can then be applied to new objects using only a single exam-
ple of that object. While our model works best for flat ob-
jects, it gives reasonable results for non-flat objects as well,
and effectively models ambient light changes, i.e. lighting
changes that have an approximately equivalent effect on all
parts of the object.

By smoothly varying the eigenflow coefficients across an
image, we can approximate nearby lighting effects as well.
It is easy to train such a model on a particular type of change
too, such as shadow changes.

5.1.3 Probabilistic image generation

Another issue regarding image generation is being able to
associate a likelihood or probability with the images gen-
erated. By applying a 3x3 linear matrix operator to each
color in an image, we can generate a wide variety of plau-
sible images from a single exemplar. However, with such
a generative model there is no notion of the likelihood of
such images. In particular, choosing the matrix randomly
according to a uniform distribution over the components of
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the matrix, the model will produce mostly images with im-
plausible color distributions.

The same is true for other generative image processes.
Of course, these other methods could be extended to include
probability densities over the generated images.

The color flow model explicitly assigns a probability
density to each color change that is particular to the envi-
ronment from which the flows were collected. This should
make it more effective in applications where the likelihood
can be used to help discriminate among explanations.

5.2 Shadows

Shadows pose a number of interesting problems in com-
puter vision. Shadows confuse tracking algorithms [11],
backgrounding schemes and object recognition algorithms.
For example, shadows can have a dramatic effect on the
magnitude of difference images, despite the fact that no
“new objects” have entered a scene. Shadows can also move
across an image and appear as moving objects. Many of
these problems could be eliminated if we could recognize
that a particular region of an image is equivalent to a previ-
ously seen version of the scene, but under a different light-
ing. For example, suppose that the lighting impinging upon
a flat surface has changed due to a nearby lamp being turned
on. The changing angle of incidence will make it difficult
to model the image transformation as a single mapping of
color space from one image to the other.

In Figure 3a, we show a simple background image. In
Figure 3b, a person and his shadow have appeared in the im-
age. We consider the problem of distinguishing between the
person (a new object) and the shadow (a lighting change).
We did the following experiment. With simple image dif-
ferencing, we segmented the image into two approximately
connected regions that did not match the previous back-
ground (Figure 3c). For each component, we then flowed
(chose eigenflow coefficients) the region from image a to
image b according to Eq. 4. Figure 3d shows the full image
based on the shadow flow.

To distinguish between shadows and non-shadows, we
want the average residual error for non-shadows to be high
while the average residual error for shadows to be low.
Since these are real images, however, a constant color flow
across an entire region may not model the image change
well.

However, we can easily extend our basic model to allow
linearly or quadratically (or other low order polynomially)
varying fields of eigenflow coefficients. That is, we can find
the best least squares fit of the difference image allowing
our γ estimates to vary linearly or quadratically over the
image. We implemented this technique by computing flows
γx,y between corresponding image patches (indexed by x

a b

c d

Figure 3: a A background image. b A new object and
shadow have appeared. c For each of the two regions, a
“flow” was done between the original image and the new
image based on the pixels in each region. d The color flow
of the original image using the eigenflow coefficients re-
covered from the shadow region. The color flow using the
coefficients from the non-shadow region are unable to give
a reasonable reconstruction of the new image.

constant linear quadratic
shadow 36.5 12.5 12.0

non-shadow 110.6 64.8 59.8

Table 1: Error residuals for the shadow and non-shadow
regions after color flows. Constant, linearly varying, and
quadratically varying flows were used.

and y), and then minimizing the following form:

arg min
M

∑

x,y

(γx,y − Mcx,y)T Σ−1

x,y(γx,y − Mcx,y). (8)

Here, each cx,y is a vector polynomial of the form [x y 1]T

for the linear case and [x2 xy y2 x y 1]T for the quadratic
case. M is an Ex3 matrix in the linear case and an Ex6 ma-
trix in the quadratic case. It defines each of the E planes or
quadrics respectively. The Σ−1

x,y’s are the error covariances
in the estimate of the γx,y’s for each patch.

Allowing the γ’s to vary over the image obviously
greatly increases the capacity of a matcher, but by limiting
this variation to linear or quadratic variation, the capacity
is still not able to qualitatively match “non-matching” im-
ages. Note that this smooth variation in eigenflow coeffi-
cients can model either a nearby light source or a smoothly
curving surface, since either of these conditions will result
in a smoothly varying lighting change.

We consider three versions of the experiment. In the first,
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we assign a single vector of flow coefficients to all of the
pixels in the region. In the second experiment, we allowed
the γ values to vary linearly across the image. This clearly
should lead to a reduction in the error of both regions’ resid-
uals. In the final experiment, we fitted quadratically vary-
ing γ values to estimate the image difference. The results
of these experiments appear in Table 1.

In each case, the residual error for the shadow region
is much lower than for the non-shadow region. Of course,
we have not specified where to select the threshold so that
this procedure works in general. Furthermore, there are
other methods available, such as normalized correlation and
methods such as [4, 5], which could also distinguish be-
tween these two regions. However, this demonstrates an-
other potential application of our model. We believe be-
cause it can handle non-linear camera effects and can be
adjusted across the image that it can successfully model a
great deal of the variability in true shadows, whereas it still
does not have so much capacity as to match images which
are not in fact of the same scene. Clearly, however, it still
has limitations, such as when a shadow is so dark that it
cannot be distinguished from a black object.

5.3 Inferring scene geometry through light-
ing change

Another interesting application of lighting invariance mod-
els is the detection of discontinuities in surfaces and surface
normals. Such discontinuities can be used to perform image
segmentation and other image processing tasks. If images
were truly linear in the impinging lighting, then given two
images of a scene under different lights, we could detect dis-
continuities in surfaces by simply using the following tech-
nique. First, calculate the “ratio image”

r(x, y) = b1(x, y)/b2(x, y),

where b1 and b2 are just the pixel brightnesses in image 1
and image 2. If the difference between the surface normals
of two adjacent patches is small, then the change in the an-
gle of incidence upon those patches (for a particular global
lighting change) will also be approximately equal. This is a
simple consequence of the assumed linearity of imaging, as
described in [6].

However, this approach depends critically on a linear
lighting model. It is easy to see however, that there are non-
linear effects in image acquisition which cause problems for
such methods. An example of this non-linearity is demon-
strated in Figure 4. The top two images in Figure 4 are two
photographs of a box covered with multicolored paper. The
photos show the top and one side of the box. The lower left
image is the ratio of these two images. Since this is the ra-
tio of images of two distinct smooth surfaces, it should have
only two regions of smoothly varying pixels. However, it is

clear that the ratios seen are variable, even within the indi-
vidual regions. Examining the original images, it is clear
that the ratio image is a function not only of surface normal,
but also of albedo. The darker regions in the original images
show different values in the ratio image than the lighter re-
gions. The fact that the ratio image is still a function of the
albedo is direct evidence of a non-linearity in the imaging
process.

If we want to detect discontinuities in surface normals,
we need to be able to non-linearly map colors between cor-
responding points in two images. To measure the success of
such a mapping, we need a measure of the discontinuity of
a ratio image. We chose the integral of the edge magnitudes
of the ratio image as such a measure, similar to what was
done in [6].

We performed the following experiment. We took two
images, I1 and I2 of a smooth surface with highly variable
albedo. Using a linear model as described in [9], we found
the nearest (least squares error) transformation Îlin of I1 to
I2. We then did the same with the eigenflows to create Îeig .
The integral of the edge images were then computed for Îlin

and Îeig . We found that this integral was about 7% smaller
for the eigenflowed ratio image. While this difference is not
great, we believe it indicates that this non-linear technique
could improve the usefullness of ratio image methods.

6 Conclusions and future work

While this work is preliminary in nature, we believe it sug-
gests that color flow techniques may help us address prob-
lems created by nonlinearities in image acquisition. Clearly
we need to perform more experiments in a variety of set-
tings. We would like to avoid making certain assump-
tions (such as the isotropy of the distribution over lighting
changes) by collecting more data for our color flow model.
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