
Learning on the Fly: Font-Free Approaches to Difficult OCR Problems

Andrew Kae and Erik Learned-Miller
Dept. of Computer Science

University of Massachusetts, Amherst MA
{akae,elm}@cs.umass.edu

Abstract

Despite ubiquitous claims that optical character recog-
nition (OCR) is a “solved problem,” many categories of
documents continue to break modern OCR software such
as documents with moderate degradation or unusual fonts.
Many approaches rely on pre-computed or stored charac-
ter models, but these are vulnerable to cases when the font
of a particular document was not part of the training set,
or when there is so much noise in a document that the font
model becomes weak. To address these difficult cases, we
present a form of iterative contextual modeling that learns
character models directly from the document it is trying to
recognize. We use these learned models both to segment the
characters and to recognize them in an incremental, itera-
tive process. We present results comparable to those of a
commercial OCR system on a subset of characters from a
difficult test document.

1. Introduction

Optical character recognition (OCR) has been a great
success of computer vision and pattern recognition, but it
is by no means “a solved problem.” While there are many
applications, such as internet search, that can benefit greatly
from OCR in its current imperfect form, the goal of tran-
scribing documents completely and accurately, under mod-
erate degradation, variable fonts, interspersions of numerals
and other common difficulties, is still far off.
In this work, we present an unsupervised OCR system

which performs well on a real-world, degraded document,
shown in Figure 1. When a document is analyzed, the
system has neither appearance models of any characters
nor training data with examples of characters. It is there-
fore a font-independent method of OCR. Instead of relying
solely on the appearance of characters, font-independent
OCR systems rely on the repetitions of similar symbols,
coupled with statistics of a language, like English, to in-
terpret a document.

Our approach to OCR is a form of iterative contextual
modeling, building a document-specific model by first rec-
ognizing the least ambiguous characters and then iteratively
refining the model to recognize more difficult characters.
Rather than rely on the appearance of characters relative to
a model developed a priori, we compare characters to other
characters in the same document to establish the equiva-
lence of those characters. A language model then helps to
determine the identity of the groups of similar characters by
comparing word hypotheses to a frequency weighted En-
glish lexicon.

2. Background

Much early work in OCR used a rigid pipeline approach
that used some approximation of the following sequence of
steps: find text, segment the letters, recognize the letters,
and then use a language model to correct errors. However,
these models make strong assumptions that break down in
challenging settings.
Systems that make hard decisions at each stage without

benefit of later stages could only accumulate errors, except
at the very end, in which language models were used to at-
tempt to fix errors that had been made along the way. Such
systems were brittle and were ultimately surpassed by sys-
tems that maintained degrees of uncertainty along the way,
borrowing tools developed by the speech recognition com-
munity, such as hidden Markov models. In these systems,
multiple hypotheses about both segmentations and charac-
ter identities were maintained in a lattice framework, and a
dynamic programming procedure was used to find the max-
imum likelihood interpretation according to a Markov prob-
ability model. Such systems today are at the heart of many
OCR systems, and have been pushed quite far, as can be
seen for example, in the work of Jacobs et al. [5].
One assumption of these systems is that the classifier

used to evaluate characters has been trained on a font which
is either equivalent, or highly similar to, the font or fonts
which appear in the target document. Even if a modern
OCR system has been trained with a very large number of

Figure 1. Document used in experiments. Errors made by our system are shown in boxes. Errors
made by OmniPage are shown in circles. Errors made by both systems are shown in diamonds. A
blank circle indicates an extra character was added in the OCR output.

fonts, document noise can significantly alter the appearance
of such fonts, making them a poor match to the stored fonts.

When the apperance model is poor, it may seem that an
OCR system is lost, but it is still possible to recognize doc-
uments, even when there is no appearance model at all. Pre-
vious work has shown that if the characters in a document
can be clustered by appearance (which does not require an
appearance model for each character class), then even if the
identity of each character is initially unknown, it can be in-
ferred simply by leveraging the statistics of the occurrence
of each character [4, 6, 7, 9]. Huang et al. [11] give the
example of a word encoded with random Greek letters α β
γ γ β γ γ β δ δ β which matches only to the word Missis-
sippi using an English dictionary. This illustrates the idea
that repetitions of appearance, rather than models of ap-
pearance, can be enough to infer the identity of letters in a
document. Such methods are sometimes referred to as ci-
phering or cryptogram decoding methods.

Treating OCR as a cryptogram decoding problem dates
back at least to papers by Nagy [14] and Casey [6] in 1986.
In [7], Ho and Nagy develop an unsupervised OCR sys-
tem that performs character clustering followed by lexicon-
based decoding. In [12], Lee uses hidden Markov models

to decode substitution ciphers based on character clusters.
Breuel [4] also presented a probabilistic method of cluster-
ing characters based on the similarity of their appearance.
These previous approaches to font-independent OCR

have shown intriguing results, but have been limited by two
critical factors. They all assume that characters can be seg-
mented accurately as a first step, which is known to be a
very difficult problem. Second, with the exception of the
work by Ho and Nagy [7], they assume that all characters
can be grouped into pure clusters, i.e. clusters that contain
only a single type of character. However, these assump-
tions are too strong to apply to anything but very clean doc-
uments.

3. Learning on the Fly

Contributions. In this paper, we build on many of the
ideas of previous papers. The work most similar to our own
is probably that of Ho and Nagy [7] which also incorporates
language statistics into a document-specific model. We in-
troduce the following innovations.

• Instead of segmenting characters first, we interleave

segmentation with character recognition in an iterative
process.

• Our approach first recognizes easier, unambiguous
characters and then the language model uses these par-
tial recognitions to build more context from which to
evaluate more difficult characters.

• There is an iterative joint inference between language
and appearance models. In each iteration, the appear-
ance classifier fixes probable mistakes made by the lan-
guage model, which improves the language model for
the next iteration.

Terminology. A blob refers to any group of characters
that has not yet been segmented. Initially, every word in the
document is considered a blob.
A glyph represents a rectangular portion of an image,

which is likely to be a single character, but may represent a
portion of a character, multiple characters, or a stray mark.
A glyph is a blob which is being considered as a character
candidate.
A glyph set is a collection of glyphs that are considered

to be the same character. This can be thought of as a cluster,
but we do not use the term cluster since the glyph sets are
not obtained through a clustering process.
Recognition is the assignment of a glyph set to a charac-

ter class, like “e”.
Matching is the process of comparing a glyph to a set

of blobs in order to find more instances of the same glyph
(typically using normalized cross correlation). If a glyph is
matched to a portion of a blob, this will segment the blob
into smaller blobs. This approach to segmentation is similar
to Hong et al [10].
A redacted string is a string representing a word in the

document and is a mixture of assigned characters, unseg-
mented blobs and a special placemarker θ representing the
glyph we want to recognize. The unsegmented blob has
an approximate length associated with it. For example, the
word “apple” might have the redacted string “a{3}θ” if the
“a” glyph was already assigned, θ is the glyph we want to
label, and there is a blob approximately 3 characters long
in between the “a” and θ. By matching a redacted string
against our lexicon and obtaining a list of words that are
consistent with the redacted string, we can assess the prob-
ability of θ being a particular character.
A dominant font is a font (comprising both a style such

as Helvetica and a specific point size) that represents more
than 50% of the characters in a document. If no single
font represents more than 50% of the characters in the
document, we say that there is no dominant font.

Assumptions. The system we have built so far is not
a commercial grade OCR system. It is intended to illus-
trate the feasibility of the ideas presented here. However,

the example we use in our experiment is from a challenging
real-world document [13], so it is not artificial data. Never-
theless, we have made a number of assumptions to get off
the ground, which we hope to relax in future research.
We assume the language of the document is English and

the distribution of words is similar to the one in our corpus.
We assume the text we want to recognize is in the dominant
font and we can find a sample of the word “a”. This unusual
assumption helps us to bootstrap our segmentation process.
A somewhat similar assumption about the frequency of stop
words has been made by Ho et al [8].
Finally, we do not address the important problems of

page layout, line finding, and the segmentation of words
within lines, as these are handled sufficiently for our
purposes by the methods of others for the time being. The
segmentation of letters within words, however, is a key
focus of our work.

Method. We now present our unsupervised, document-
specific method:

1. First, we find the word “a” in the document, which ob-
viates character segmentation since the word consists
of a single character. To do this, sort all words by their
width in pixels. For the N shortest words (we choose
N to be 15), match each word by performing a nor-
malized correlation of the word’s rectangular bounding
box to every position in the document (searching only
along the baselines of text lines). A “match” is found
if a specific threshold of the normalized correlation is
reached. For each of these N words, assume that the
word is indeed an “a”, and use the width of the word
to calculate about how many total characters there are
in the document. Then, knowing that the lower case
letter “a” accounts for about 7% of all letters, pick the
word that most closely matches this percentage.

2. Match the “a” found in the previous step to all blobs
in the document, building our first glyph set. When
matching, our method strongly favors high precision
over high recall.

3. Each candidate “a” in the glyph set (some of the ele-
ments in the set may be erroneously included) is used
as a new delimiter to shatter the current blobs into
smaller blobs.

4. From the remaining blobs, select a new blob θ as the
next glyph for matching. Unlike the previous steps, we
do not know, a priori, the identity of θ. We match each
potential blob to form a glyph set. After several glyph
sets have been created, we use the language model (see
next section) to choose and identify the glyph set in
which it has greatest confidence. We measure this by

picking the glyph set with the largest difference in like-
lihood between its most confident and next most con-
fident character assignment.

5. Add the glyph set of θ and its assigned character class
found in the previous step to the model.

6. Reclassify all glyphs in every labeled glyph set by
comparing each glyph to the mean glyph of every la-
beled glyph set and move it to the glyph set it matches
highest to (as measured by normalized cross correla-
tion). The mean glyph is an average of the glyphs in a
glyph set. This allows us to recover from early errors
in glyph set creation.

7. Steps 4-6 are repeated until none of the remaining
blobs match to any part of the remaining document,
i.e. no glyph set with more than a single glyph can be
produced. Each blob is then recognized by comparing
it to its 5 nearest neighbors (as measured by normal-
ized cross correlation) across all glyph sets, and using
the majority vote as the assigned character class.

Language Model. We use corpus statistics to calculate
the likelihood of observing a set of redacted strings. We
use 10 texts from the Project Gutenberg corpus [1] to pro-
vide statistics of the English language. There were a total
of 1,525,460 words in the corpus.
In the description below, θ is the glyph set to label, R is

the set of redacted strings and V is the set of recall rates for
previously assigned characters. We assume that the label of
θ comes from some alphabet (in our case, we are assuming
all ASCII characters). It is necessary to track recall rates
because we may consider labeling a new glyph set with a
character already assigned to a previous glyph set.
For example, if we observed the letter “a” with 90% es-

timated recall (so about 90% of the true “a”s have been
found), it is unlikely that a new, large glyph set is really
an “a”. We approximate the expected number of “a”s in
a document by multiplying the unigram frequency of “a”
by the approximate total number of characters in the doc-
ument. We approximate the total number of characters by
dividing the combined width of all blobs by the width of the
“a” glyph. We then compute recall by dividing the observed
number of “a”s by the expected number of “a”s.
In a set of redacted strings R, each Ri may consist of

previously assigned characters, unsegmented blobs, and a
placemarker θ for a new glyph set we want to identify. Our
goal is to find the most likely character class g given the
redacted strings R and recall rates V .

P(θ = g|R,V) =
P(R|θ = g,V) ·P(θ = g|V)

P(R|V)

using Bayes Rule. Since P(R|V) does not change for dif-
ferent g, we ignore it. We treat P(θ = g|V) as the unigram

probability of g. We consider each redacted string Ri inde-
pendently to get

P(R|θ = g,V) =∏
i

P(Ri|θ = g,V).

Our generative model assumes that each Ri has a 95%
chance of being drawn from our word corpus and a 5%
chance of being generated by a random character process:

P(Ri|θ = g,V) = 0.95 · (∑
m∈matches

P(m) · ∏
c∈chars(m)

P(r(c)|V,Ri)

· ∏
b∈blobs(Ri)

P(b|Ri))+0.05 · (∏
c∈chars(Ri)

P(c) · ∏
c∈chars(Ri)

P(c|V)).

For the probability of Ri being drawn from a corpus word,
we sum over all wordsm that match the redaction and calcu-
late P(m), the probability of observing the matching word
m in our corpus.
Next, for each character c inm, we compute P(r(c)|V,Ri)

using a Bernoulli distribution based on the observed recall
rates. P(r(c)|V,Ri) = recall of c, if c is found in V , and (1-
recall of c) if not. For example, if the redaction is “{1}ye”
and m= “eye”, P(r(“e”)|V,Ri) = (1-recall of “e”) since we
missed it, then P(r(“y”)|V,Ri) = recall of “y”, and lastly
P(r(“e”)|V,Ri) = recall of “e”. If the recall for “e” is high,
we don’t expect to observe many more “e”s and so (1-recall
of “e”) will be low.
We use the length information in a redacted string to pe-

nalize matches to words with significantly different lengths.
For example, if the redaction is “{1}at”, this matches to
a word like “cat” but also to a word like “what”. If the
blob length is off by 1, we set P(b|Ri) =20%, if it the same
length, P(b|Ri) = 60%, and P(b|Ri) = 0% otherwise.
Because we need to account for the possibility that a

redaction may not match to any corpus word, we reserve
a probability mass of 5% for unseen cases. We compute
this portion by examining each character c in the redaction
(ignoring the blobs) and multiply the unigram probability
of c and the recall rate P(c|V).
When we want to recognize a glyph set θ, we consider

θ= g, where g can be any ASCII character. We then run the
calculations described above and pick the argmax of P(θ =
g|R,V).

4. Experiments

We evaluated our system on a portion of an old IEEE pa-
per [13] shown in Figure 1. We attempted to recognize all
word blobs in the document but for evaluation, we currently
only consider words entirely in lowercase, which we call
Level 0 words. This excludes any words containing upper-
case letters, digits or special characters. These characters
occur less frequently than most lowercase letters and so our

Table 1. Results
Method Word Accuracy Character Accuracy
Ours 164/175 = 0.937 0.981

Omnipage 164/175 = 0.937 0.979
Tesseract 172/175 = 0.983 0.996

Table 2. Sample Errors
Method Errors
Ours it→ t, the→ t, equated→ eluated

Omnipage it→ It, and→ arid, be→ he

language model doesn’t have enough leverage to accurately
classify these glyph sets.
We ran experiments on a Core2Duo 2.66GHz machine

with 2GB of RAM. The entire process took about 12 hours
to run with most computation time spent on redacted string
calculations. When we began our research, Omnipage 15
[2] had the best performance of several systems on our test
document, and our goal was to achieve comparable or better
performance on the dominant font for this document. Just
before submission, we tried a new release (2.03) of Tesser-
act [3], an open-source OCR system, and its results had
improved substantially, beating both our own results and
those of Omnipage 15. Despite coming in behind Tesser-
act, we feel our results are still of significant interest, since
we produced competitive results with no font models at all
as shown in Tables 1 and 2.
Following the conventions in [15], we define character

accuracy as n− #errors/n, where n is the total number of
correct characters and # errors is the number of edits needed
to correct the OCR output text. Word accuracy is defined to
be the percentage of correctly recognized words.
In Table 2, we list some of the representative errors made

by each system on the text in Figure 1. Our approach and
OmniPage incorrectly classified “it” as “t” and “It” respec-
tively. The “i” glyph in the diamond in Figure 1 is highly
degraded and was not recognized as a glyph candidate by
our system. Our system misrecognized “the” as “t”, illus-
trating a weakness in our matching. Since no glyph matched
to the “he” portion, it was left unrecognized. Our approach
also misrecognized “equated” as “eluated”. This is because
the “q” glyph is so infrequent, there isn’t enough context for
correct labeling. Our approach is strongest when there are
many examples of a glyph.

5. Conclusion and Future Work

We have shown that it is possible to achieve favorable
results on a real, noisy document using only a corpus of text
and without using any character models or training data. In
the future, we plan on testing our approach over a much

larger set of test documents and relaxing constraints to al-
low for full recognition of all character types.
One significant drawback of our approach is the long

time necessary to compute the most likely character recog-
nition of a set of redacted strings. For our approach to be
viable and used in production, this computation time must
be reduced significantly.
Our approach assumes that test documents conform to

the English word statistics found in our corpus. If we use a
topic model [16], we can determine that certain words are
more likely to be observed than others. For example, if a
document is about cars, then we are more likely to observe
a word like “torque” than “tongue” which may help if the
images for “rq” and “ng” appear very similar.

References

[1] http://www.gutenberg.org/.
[2] http://www.nuance.com/omnipage/.
[3] http://code.google.com/p/tesseract-ocr/.
[4] T. Breuel. Classification by probabilistic clustering. In IEEE

International Conference on Acoustics, Speech and Signal
Processing, 2001.

[5] P. V. C. Jacobs, P. Y. Simard and J. Rinker. Text recognition
of low-resolution document images. In ICDAR, pages 695–
699, 2005.

[6] R. Casey. Text OCR by solving a cryptogram. In Interna-
tional Conference on Pattern Recognition, 1986.

[7] T. Ho and G. Nagy. OCR with no shape training. In Inter-
national Conference on Pattern Recognition, 2000.

[8] T. K. Ho. Bootstrapping text recognition from stop words.
In Procs. ICPR-14, pages 605–609, 1998.

[9] J. Hobby and T. Ho. Enhancing degraded document images
via bitmap clustering and averaging. In International Con-
ference on Document Analysis and Recognition, 1997.

[10] T. Hong and J. Hull. Visual inter-word relations and their
use in character segmentation. In SPIE, 1995.

[11] G. Huang, E. Learned-Miller, and A. McCallum. Cryp-
togram decoding for optical character recognition. In In-
ternational Conference on Document Analysis and Recogni-
tion, 2007.

[12] D. Lee. Substitution deciphering based on HMMs with
applications to compressed document processing. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
24(12), 2002.

[13] D. MacKay. Entropy, time and information (introduction
to discussion). Information Theory, Transaction of the IRE
Professional Group, 1(1):162–165, 1953.

[14] G. Nagy. Efficient algorithms to decode substitution ciphers
with applications to OCR. In International Conference on
Pattern Recognition, 1986.

[15] S. V. Rice, S. V. Rice, F. R. Jenkins, F. R. Jenkins, T. A.
Nartker, and T. A. Nartker. The fifth annual test of ocr accu-
racy. Technical report, 1996.

[16] M. Steyvers and T. Griffiths. Probabilistic topic models. In
T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, ed-
itors, Latent Semantic Analysis: A Road to Meaning. Lau-
rence Erlbaum, 2006. In press.

