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Scene Text Recognition using Similarity and a Lexicon
with Sparse Belief Propagation
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Abstract —Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and store fronts. Relative to document
recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve
this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of
language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model,
helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hoc. We introduce a probabilistic
model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up
method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model,
we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of
signs in outdoor scenes, incorporating similarity reduces character recognition error by 19%, the lexicon reduces word recognition error by 35%, and
sparse belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no loss in accuracy.

Index Terms —Scene text recognition, optical character recognition, conditional random �elds, factor graphs, graphical models, l exicon, language
model, similarity, belief propagation, sparse belief propagation
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1 INTRODUCTION

T HE problem of optical character recognition (OCR), or the
recognition of text in machine-printed documents, has a

long history and is one of the most successful applications
of computer vision, image processing, and machine learning
techniques. In this paper, we focus on scene text recognition
(STR), the recognition of text anywhere in the environment,
such as on store fronts, traf�c signs, movie marquees, or
parade banners. While super�cially similar to OCR, STR is
signi�cantly more challenging because of extreme font vari-
ability, uncontrolled viewing conditions, and minimal language
context. Dif�cult viewing angles, shadows, occlusions, unique
fonts, and lack of language context are all problems that make
the typical STR problem sign�cantly more dif�cult than a
straightforward OCR application.

In fact, while state-of-the-art OCR systems typically achieve
character recognition rates over 99% on clean documents, they
fail catastrophically on STR problems. Humans of course, have
no trouble reading text in the environment under normal con-
ditions. One reason for the gap between human and machine
performance in STR problems could be that people are able to
apply many more sources of information to the problem than
current automated techniques. This is not unique to character
recognition, of course; using more information sources in
approaches to many computer vision problems should improve
results. Because several sources of information factor into the
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reading process, we require a computational model that can
combine factors in a uni�ed framework.

In this paper, we propose a probabilistic graphical model
for STR that brings together bottom-up and top-down infor-
mation as well local and long-distance relationships into a
single elegant framework. In addition to individual character
appearance, our model integratesappearance similarity, one
underused source of information, with local language statistics
and a lexicon in a uni�ed probabilistic framework to reduce
false matches—errors in which the different characters are
given the same label—by a factor of four and improve overall
accuracy by greatly reducing word error. The model adapts
to the data present in a small sample of text, as typically
encountered when reading signs, while also using higher level
knowledge to increase robustness.

The paper is organized as follows. In the remainder of this
section, we give additional background on using similarity
and lexicons in text recognition and discuss why sparse belief
propagation is important. The next section brie�y introduces
the discriminative probabilistic framework in terms of factor
graphs. Section 3 describes the particular form and features
of our model for scene text recognition. We describe the
particulars and advantages of sparse belief propagation for
ef�cient approximate inference in Section 4. Our experimental
results on scene text images are presented in Section 5, and
we conclude in Section 6.

1.1 Similarity

Because of language priors or other constraints, it is not
unusual for a text recognizer to assign two different labels
to two identical characters (see Figure 1). This is particularly
common when the appearance model for a font is weak,
causing high character ambiguity. This happens frequentlyin
STR due to the lack of training data for a particular font.
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Information Result
Appearance FIeet

Appearance, Language Fteat
Appearance, Language, Similarity Fleet

Similarity ! Appearance, LanguageFteet

Fig. 1. A query image (top) is interpreted with varying amounts
of image and linguistic information. Only when uni�ed with simi -
larity information is the other contextual information constrained
to global consistency.

In an effort to make character recognition more robust to
font variations or noise, recent advances in OCR performance
have exploited the length of documents to leverage multiple
appearances of the same character. Hong and Hull [3] cluster
word images and then label the clusters, rather than individual
words. Similarly, Breuel learns a probability of whether two
images contain the same character and uses the probability
to cluster individual characters [4], with subsequent cluster
labeling (i.e., by voting) and nearest neighbor (most similar)
classi�cation [5]. These methods capitalize on the idea of
similarity, that characters and words of similar appearance
should be given the same label. However, they suffer from
the drawback that there is no feedback between the labeling
and clustering process. Hobby and Ho [6] ameliorate this
somewhat by purging outliers from a cluster and matching
them to other clusters where possible. These processes all
solve the clustering and recognition problems in separate
stages, making it impossible to recover from errors in the
clustering stage. Furthermore, they rely on having hundreds
or thousands of characters in each recognition problem so that
clustering is practical, making them impractical for reading
short text segments like those encountered in the STR problem.

Prior to our recent work [1], thedissimilarity between
character images had not been used as evidenceagainstgiving
them the same label, but in many circumstances this too is a
reasonable approach. Previous clustering-based methods only
ensure that all cluster members are given the same label; they
do not prevent different clusters from being assigned the same
label.

Consider the example in Figure 1. The top row of text is
the result of reading the sign using only basic information
about character images, and the lowercasel (ell) is mistaken
for an uppercaseI (eye). The next result combines the image
information with some basic local language information. This
does not correct the error but in fact introduces new errors.The
image and language information is based on local context and
do not require any global consistency. By factoring in character
similarity information in the third line, the errors are corrected;
the twoe characters that appear the same are given the same
label, while thel andt characters of dissimilar appearance are
given different labels. In contrast, using similarity information
�rst to determine which characters are the same and then
identifying character clusters, as shown in the last line, does
not perform as well as a uni�ed model. This is particularly
true when the number of characters is very small. We present

in the �rst part of this paper a model that incorporates all of
these important information sources [1].

Kumar and Hebert [7] have used such a strategy for the
general image labeling problem, associating image sites with
particular labels and biasing the eventual classi�cation by
measuring the similarity of neighboring image regions. Our
approach broadens this to incorporate all pairs of characters
that must be classi�ed, not just neighboring characters.

1.2 Lexicon

Higher-level information, such as a lexicon, can also help
improve recognition. When images have low-resolution or
contain uncommon fonts, a lexicon can inform an otherwise
unreliable character recognizer. Humans are more reliable
at reading characters when they are present in words, or
pseudo-words [8], motivating us to consider how this infor-
mation may be incorporated in the recognition process. The
earliest uni�cation of character confusion likelihoods with a
lexicon constraint is by Bledsoe and Browning [9]. Device-
speci�c character confusion likelihoods are combined with
word unigram probabilities to �nd the most likely dictionary
word given the OCR output. One major drawback is that the
computational load is linear in the size of the lexicon. For low-
resolution document images, Jacobs et al. [10] have improved
accuracy by forcing character parses to form words drawn
from a lexicon, but this technique will not be able to correctly
recognize non-lexicon words. In the STR problem, non-words
are quite common due to the abundance of proper names.

Related work on specialized models for scene text recogni-
tion either ignores helpful contextual and lexical information
or incorporates them in anad hoc fashion. For instance,
after isolated character recognition, Thillou et al. [11] post-
process results by applying ann-gram model to then-best
list of characters. Beaufort and and Mancas-Thillou [12]
similarly use a lexicon in a post-processing stage with a
�nite state machine. Linguistic processing is divorced from
recognition in both cases by ignoring the relative probability
of characters based on their appearance. Alternatively, Zhang
and Chang [13] have handled this by explicitly including a
lexical decision variable in a probabilistic model. However,
their model does not include local language properties, such
as bigrams, for the case when a word is not in the lexicon.
We �nd both are important for recognition accuracy.

As indicated above, one practical issue with using a lexicon
is the time it takes to examine candidate words in a large
lexicon. Lucas [14] addresses this issue by reusing compu-
tation in a trie-formatted lexicon. Another approach, taken
by Schambach [15], is to eliminate words from consideration
based on the low probability of their constituent characters.

We present an addition to our discriminative model that
incorporates a bias for strings from a lexicon [2]. Modelingthe
lexical decision process allows word predictions to come from
outside the lexicon, based on the evidence and a prior bias for
(or against) lexicon words. Our model allows ef�cient approx-
imate inference schemes by eliminating the need to explicitly
consider all possible strings, only evaluating entries from the
lexicon. Notably, we can speed this process even further by
applying an approximate “sparse inference” technique.
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1.3 Sparse Belief Propagation

Belief propagation (BP) is a popular and simple method for
learning and prediction in probabilistic graphical models. The
algorithm's message passing operations require sums over the
domain of functions (factors) measuring local compatibility
between assigned labels. Since the complexity of the sum
grows exponentially with the number of arguments to these
functions, it is typically only used with factors of two or
three unknowns. Adding a lexicon to our model introduces
factors over several more unknowns—the characters of an
entire word. Without simpli�cation and approximation, us-
ing belief propagation would be untenable. Fortunately, non-
lexicon information allows us to make reasonable predictions
about which characters are not possible candidates. We use
the sparse belief propagation algorithm proposed by Pal et
al. [16] toward this end. By eliminating unlikely characters
from consideration in messages passed between nodes of a
graphical model, we can drastically reduce the set of words
that must be considered. Previous work by Coughlan and
Shen [17] features an approach similar in spirit for pairwise
functions, but it has not been generalized to higher-order
functions, and it uses thresholds for sparsity that may not
provide good approximations to the messages. Importantly,
sparse belief propagation doesnot completely drop characters
from consideration. Rather, it merely reduces the contextual
dependence between characters when one of them has weak
support based on other information. Further details are given
in Section 4.

In summary, by fusing the available information sources,
such as character similarity and a lexicon, in a single model,
we improve overall accuracy and eliminate unrecoverable
errors that result from processing the information in separate
stages.

2 PROBABILISTIC FRAMEWORK

Graphical models of probability are a powerful tool for
describing and modeling the logical dependence of various
information sources and unknowns in a Bayesian framework.
We employ a discriminative undirected graphical model [18]
for predicting character identities.

Let x be an input image representation andy = y1y2 : : :yn
be the string of characters contained in the image, taken
from an alphabetY. Letting I represent our information and
assumptions about the problem, we frame the task of reading
text in images as an inference problem—usingI and some
training dataD—over a model or parameter spaceQ:

p(y j x;D; I ) =
Z

�
p(y j x; � ; I ) p(� j D; I ) d� : (1)

Note we have assumed that (i) given a prediction model� ,
the training dataD do not reveal anything additional about
y, and (ii) given the training dataD, an additional image
x does not give any information about the prediction model
� . Evaluating such an integral is non-trivial, so we take the
standard approach of �nding the most likely model

b� = argmax
� 2 �

p(� j D; I ) (2)

and using the point approximationp(� j D; I ) = d
�

� � b�
�

so
that the integral (1) becomes

p(y j x;D; I ) � p
�

y j x; b� ; I
�

: (3)

The probabilityp(y j x; � ; I ) is the typical undirected graph-
ical model. Let C contain some subset of thef 1; : : : ;ng
positions of y, so that yC gives the values of the subset.
The conditional probability is expressed as a product of local
factors,

p(y j x; � ; I ) =
1

Z(x; � ) Õ
C2C

fC (yC;x) ; (4)

whereZ(x; � ) is the observation-dependent normalizing factor
ensuring the expression is a proper probability distribution.
The non-negative factorsfC express the local compatibility
among the unknowns inyC and the observationx, andC is a
collection of the subsets for indexing these factors. Typically
there are several categories of factors that are instantiated
several times in the product (4). Each of these instantiations
involves the same function, but accepts a different set of
argumentsC. For example, the same character recognition
function is applied at many locations in the image.

2.1 Inference

The index setsC induce a bipartite graph between the factors
fC and the unknownsy, as illustrated in Figure 2. When this
graph (not includingx and edges connected to it) is a tree,
exact inference may be performed ef�ciently via the sum-
product algorithm [19], also known as belief propagation (BP).
Local information stored in the factors in�uences the global
interpretation by passing messages between the factors and
nodes. Factors neighboring nodei in the graph are indexed
by members of the setN (i) = f C 2 C j i 2 Cg. The node-to-
factor messages have the form

mi! C (yi) µ Õ
C02N (i)nC

mC0! i (yi) ; (5)

the product of all the incoming messages to a node from
other neighboring factors. The resulting functional message
is normalized (sums to 1 overyi) for numerical stability.
The factor-to-node messages combine the local information
expressed in the factor and the current messages from its other
arguments,

mC! i (yi) = å
yCnf ig

fC (yC;x) Õ
j2Cnf ig

mj ! C (y j ) : (6)

Note that the summation is taken over all values of the nodes
in the setCnf ig.

If the graph has cycles, these messages are iteratively passed
until convergence, which is not guaranteed but empirically
tends to give reasonable results in many applications. Greater
detail about factor graphs and inference may be found in an
article by Kschischang et al. [19]. We add more about a sparse
version of BP for accelerating inference in Section 4.
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2.2 Training

To learn from training data, the probability distribution (4) is
parameterized by� , with each factorfC having some subset of
the parameters,� C, as arguments. Given a set of independent,
labeled examplesD =

n
y(k) ;x(k)

o

k
, the parameters may be

estimated by maximizing the posterior probabilityp(� j D; I ).
The optimization (2) is the usual maximuma posteriori(MAP)
estimation with some parameter priorp(� j I ) [18]. Using
Bayes' rule, the parameter posterior is

p(� j D; I ) µ p(� j I )Õ
k

p
�

y(k) j x(k) ; � ; I
�

(7)

where the product terms have the same model form (4). After
taking logarithms, the objective function is given by

L (� ;D) = logp(� j � ; I )+

å k åC2C(k) log fC
�

y(k)
C ;x(k) ; � C

�
� logZ

�
x(k) ; �

�
;

(8)

where p(� j � ; I ) is a prior on the parameters with condi-
tioning parameters� and informationI . The set of factorsC
depends on how many characters there are in the observation
and is thus indexed by the particular examplek. When fC is
log-linear in � C (as all of the learned factors we employ are)
and the log prior is convex, the objectiveL (� ;D) is convex,
and a global optimum can easily be found.

Because it is a combinatorial sum, the normalization term
Z(x; � ) is generally intractable. To simplify training, we use
a piecewise approximation [20], which changesZ from a sum
over all y to a product of local sums over the terms for each
factor. Thus, the logZ term in (8) is replaced by the upper
boundåC2C logZC where

ZC (x; � C) = å
yC

fC (yC;x; � C) : (9)

Since the factors are local and typically include only a small
set of unknowns, sums over the set of the values foryC are
practical to compute. Replacing logZ with an upper bound
means we are optimizing a tractable lower bound on the log
posterior probabilityL (� ;D).

3 MARKOV MODELS FOR RECOGNITION

Using the probabilistic framework described in the previous
section involves de�ning parameterized factors for the data
and the labels. For this recognition problem, model input
will be size-normalized character images and the output is
the predicted character labels. In this section we will outline
the details of our model, including the form of the input and
features, the relevant information being used, and the particular
factors that are learned to form the model.

Our model makes the following assumptions:
1) For each sign, the input is all of the same font
2) Characters have been segmented (that is, the coordinates

of their bounding boxes are known), but not binarized
3) Word boundaries are known

Our conditioning informationI consists of these in addition to
our other basic information. Assumption 1 is especially rea-
sonable for signs containing small amounts of text. Although
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Fig. 2. Factor graphs for inferring characters y from a given
image x. The solid (black) factors capture relationships between
the image and character identity (IA). Hatched (blue) factors
between neighboring ys capture language information including
bigrams, (IB), and letter case (IC). Shaded (red) factors among
ys account for similarities between characters in x for jointly
labeling the string (IS). Cross-hatched (magenta) factors can
constrain portions of y to be drawn from a lexicon, (IW), while the
tiled (cyan) factors capture the bias for lexicon words, (IL). TOP:
Model using pairwise similarity comparisons. BOTTOM: Model
incorporating a lexicon and lexical decision unknowns wA and
wB for two words.

exceptions to this certainly exist, our database of signs has
only a few that stretch the assumption, and it is not dif�cult
to imagine introducing a factor for deciding whether two
characters or words are in the same font. While Assumption 2
is not the most general, with high-resolution digital cameras,
adequately lit scenes and an area of interest that occupies
suf�cient area on the sensor, it is reasonable. Note that it
does not require a binary image, only a rough localization
of each character. Furthermore, with an automated version
of Niblack's binarization algorithm [21], we can accurately
segment over 96% of characters in our evaluation. Finally, as-
sumption 3 is not overly restrictive since word boundaries can
mostly be found by modeling intra- and inter-word character
spacings. These assumptions are all reasonable for the problem
we are trying to solve, namely, reading short amounts of text
found on signs in images of scenes.

In the remainder of this section we build up our model
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Fig. 3. An example training character with (left to right) real,
imaginary, and complex modulus �lter responses for one orien -
tation and scale.

from its constituent factors, based on the assumptions listed
above. These will re�ect several useful sources of information,
namely:

� character appearance (what doAs, Bs, etc., tend to look
like?)

� local language properties (what letters tend to follow
other letters? where do we expect capital letters?)

� character similarity (which characters look similar or
different?)

� lexicon (is this string more likely to beelm or clm)?
Each of these are combined effortlessly into a uni�ed model
for character recognition with the basic form outlined in
Section 2.

Eventually, we will want to compare the results of the model
with various information sources (mathematically represented
as factors) included. Since we denote the assumptions or
information I that a particular modelp

�
y j x; b� ; I

�
employs,

this is used to also indicate the information sources being used.
To this end, when a particular class of factors is used, e.g.,f A

for character appearance, we indicate this by conditioningthe
model on the corresponding “information”IA.

The models resulting from the combination of the factors
we will de�ne are shown in Figure 2. All of the various factor
types may be combined in one model, but we show them in
two separate graphs for clarity. The top graph highlights the
“adaptive” model that uses similarity between the character
images as part of the recognition process. The bottom graph
demonstrates how other factors may be introduced to promote
the recognition of strings as lexicon words. Details of eachof
these factor types are given in the remainder of this section.

3.1 Appearance Model

The most obvious component of a recognition model involves
relating character appearances to their identity. Gabor �lters
are an effective and widely used tool for feature extraction
that decompose geometry into local orientation and scale [22].
Their success in handwriting recognition [23] and printed
character recognition [24] demonstrates their utility forthis
task. Using a minimally redundant design strategy [25], a bank
of 18 Gabor �lters spanning three scales (three full octaves)
and six orientations (30� increments from 0� to 150� ) is
applied to the grayscale imagex, yielding complex coef�cients
f that contain phase information. The real and imaginary parts
of the �lter are even and odd functions, respectively.

Taking the complex modulus of the �lter outputsjfj provides
phase invariance and makes the responses less sensitive to
translations of the input; see Figure 3. Practically, this makes
the �lter responses invariant to thepolarity of the text (white-
on-black versus black-on-white). After �ltering, the complex
modulus of each response image is downsized by applying a

Gaussian blur and downsampling. This adds a slight amount of
insensitivity to feature location for different fonts but mostly
serves to reduce the size of the feature vector used as input to
the model. All of the downsized responses are collected into
a single feature vector for each character,Fi , a function of the
original imagex.

Given a relationship between the identity of the character
and the �lter responses, this information is denotedIA because
it is based on the appearance of the character image. We then
associate character classes with these �ltered images by a log-
linear factor

log f A
i

�
yi ;x; � A�

= � A (yi) � Fi (x) : (10)

The same appearance parameters are used for every character,
so there is no dependence of� A on indexi.

3.2 Language Model

Properties of the language are strong cues for recognizing
characters in previously unseen fonts and under adverse con-
ditions; much previous work has made use of it in various
ways (see, e.g., [26]). We add simple linguistic propertiesto
the model in the form of two information sources: character
bigrams and letter case.

It is well known that the English lexicon employs certain
character juxtapositions more often than others.N-grams are
a widely-used general feature for character and handwriting
recognition. Our model uses this informationIB via the log-
linear factors

log f B
i j

�
yi ;y j ; � B�

= � B (yi ;y j ) ; (11)

wherei and j are ordered, adjacent characters within a word.
In this model, we do not distinguish letter case in the bigrams,
so the weights in� B are tied across case (i.e.,� B (R;A) =
� B (r ;A) = � B (R;a) = � B (r ;a)).

Prior knowledge of letter case with respect to words also
proves important for accurate recognition in English. In some
fonts, potentially confusable characters may have different
cases (e.g.,l and I , lowercaseell and uppercaseeye, re-
spectively). We can improve recognition accuracy in context
because English rarely switches case in the middle of the word.
Additionally, uppercase to lowercase transitions are common
at the beginning of words, but the reverse is not. Note that digit
characters have no case. This informationIC is incorporated
with the feature weights

log fC
i j

�
yi ;y j ; � C�

=

8
<

:

qC;s yi ;y j same case
qC;d yi ;y j different case

0 otherwise;
(12)

when i and j are adjacent characterswithin a word and

log fC
i j

�
yi ;y j ; � C�

=
�

qC;u yi lowercase,y j uppercase
0 otherwise,

(13)
when i and j are the �rst and second characters of a word,
respectively. Thus, for this letter case model,fC, we have the
parameters� C =

�
qC;s qC;d qC;u

�
. Note that the functions

(12) and (13) have the same general log-linear form as (10)
and (11), but we present their more compact, tied form here.
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3.3 Similarity Model

An important, underused source of information for recognition
is the similarity among the character images themselves—
two character images that look the same should rarely be
given different labels. Toward this end, we need a comparison
function for images. We have found the vector angle between
the concatenated real and imaginary parts

f0
i =

�
Â (f i) Á (f i)

�
(14)

of �ltered image vectorsf i and f j for each character to be a
robust indicator of image discrepancies. We use

ki j = 1�
f0
i � f

0
j

p
f0
i � f

0
i

q
f0

j � f0
j

(15)

as a distance measure, which has range[0;2]. If r is the angle
between the two vectorsf0

i and f0
j , the distance is related by

r = 1� arccosk. When the distance is small the characters
are very similar, but when large they are dissimilar. Using the
information IS, we add the factors

log f S
i j

�
yi ;y j ;x; � S�

= d(yi ;y j ) � S� Fi j (x) ; (16)

whered(�; �) is the Kronecker delta, and

Fi j (x) =
�

� ln(ki j ) ln(2� k i j ) 1
�

(17)

is a vector of basis functions that transform the distanceki j
between two character images inx. The �rst two functions
each have a distance range boundary as an asymptote, and
the last is a bias term. Thus, the �rst weight in the parameter
vector � S establishes a high compatibility reward for small
distances, the second weight a low compatibility penalty for
larger distances, and the bias helps (in conjunction with the
�rst two) establish the crossover point. This is qualitatively
similar to the inverse of the sigmoid function with a scaled
range, except that it is no longer symmetric about the zero-
crossing; see Figure 4. Once again, we note that the function
(16) has the general log-linear form asf A, but we present its
more compact version here.

3.4 Lexicon Model

A lexicon is a useful source of high level information that
can be applied to recognition. We propose another set of
factors for our model that incorporates lexicon information.
First, we add auxiliary unknowns that represent lexical de-
cisions. We then add two new factors involving these and
the character unknowns. The �rst factor is simply a bias
determining how likely it isa priori for a given string to
be from the lexicon. The second is a simple binary function
that connects all the constituent characters of a word to the
lexical indicator. Although this factor is simple in appearance,
a naïve implementation would present a great deal of dif�culty
for common message-based approximate inference methods,
such as BP. Fortunately, the form of this particular function
makes the implementation much easier, though still linear in
the lexicon size. This can be problematic when the lexicon
is large, therefore we use a sparse message passing scheme
for a lexical model that avoids most of the overhead required
with no loss of accuracy on our data. In the remainder of
this section, we introduce the new lexical factors, followed by
the specialized message passing scheme for inference in the
resulting model.

3.4.1 Lexicon Factors

To represent the lexical decision, we introduce auxiliary un-
knownsw = wAwBwC : : : that, for each word in the stringy,
indicateswk 2 f 0;1g whether it is present in the lexiconL. For
notational clarity, we use numerical indices for the character
unknowns y and alphabetical indices for the lexical/word
unknownsw. Let C be the set of unknowns relating to a single
word unit; such a set will contain the indices of some letters
y and one entry fromw. The factor relating the lexicon, the
predicted string, and the lexical decision, is a simple binary
function

fW
C (yC;wC) =

�
0 wC = 1^ yC 62L
1 otherwise,

(18)

where we have writtenwC to indicate the value of the sole
index of w present inC. Thus, the corresponding factor (18)
is zero only whenwC indicates the string is a word butyC
is not found in the lexicon. This tautological factor simply
represents the proposition

wC = 1 ) yC 2 L (19)

and would not be much use were it not for the fact the
value ofwC is unknown. The indicatorwC could help control
other aspects of interpretation in the model. For instance,we
might want to disable the in�uence of the local language
compatibilities whenwC = 1; no matter how unlikely the word
yukkyis1, it is in the lexicon and should not be discounted for
its unusual bigrams during recognition.

The other new factor is a simple term biasing the preference
for strings to be drawn from the lexicon

log f L
k

�
wk;qL�

= ( 1� wk) qL: (20)

1. Under a bigram model trained on a corpus of English text, theword is
actually the least likely from a large lexicon.
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This function also has a general log-linear form, but we
present here its interpretable compact form, so that the single
parameterqL can be thought of as penalty for non-lexicon
predictions.

Introducing these two new classes of factorsfW and f L

will be re�ected by conditioning on informationIW and IL.
The factor graph for a model including these factors appears
in the bottom of Figure 2. In the next section, we describe
more about how the two new compatibility functions (18) and
(20) affect inference in the model and introduce the application
of a sparse inference technique for making predictions using
loopy BP.

3.5 Inference with the Lexicon Factors

Inference, even approximate inference, in the model pro-
posed above might be computationally taxing in general. The
sum-product algorithm involves computing local marginals
of factors, which is generally much easier than the more
global marginalization desired. However, the complexity of
marginalizing the lexicon word factorsfW growsexponentially
with the length of the word. For instance, with a six letter word
in a 62 character alphabet, each iteration of message passing
would require a sum over 626 or nearly 57billion strings.

Fortunately, the on/off “gating” behavior of the functionfW

allows us to take advantage of its special form. The effect is
that whenwC = 1, the “product” in the sum-product equation
only needs to be summed over words in the lexicon. For the
case whenwC = 0, it is summed over all strings, but the
sums over constituent characters become independent. This
means we can make the calculation a much more ef�cient
product of sums. Thus, the special form (18) makes the
inference calculation linear in the size of the lexicon or the
character alphabet, rather than exponential in word size. The
computational expense of a six letter word drops from billions
of possible strings to just a few thousand lexicon words.

As a concrete example, consider the three letter wordy5y6y7
with lexical decision unknownwB in the right-hand portion of
the bottom graph in Figure 2. The general form of a factor-
to-node message (cf. Eq. 6) is a product of the factor times
the messages to that factor from all its arguments except the
message recipient. This product is then summed over all those
arguments leaving a function whose value is dependent on
the recipient node. To calculate the message from a lexicon
factor to the charactery5, we may split the marginalization
(the summation of all unknowns excepty5) into two cases,
one where the string is a lexicon word and another when it
is not: the two values forwB. For the lexicon factor we are
calling C, the specialized form of the message fromC to the
charactery5 has the form

mC! 5 (y5) = å f y5y6y72Ljy5g

�
fW
C (y5;y6;y7;wB = 1) �

m6! C (y6) m7! C (y7) mB! C (wB = 1)
�

+

mB! C (wB = 0) :

(21)

We �rst separate the sums for the two values ofwB. Because
the factor fW

C (yC;wC) is zero whenever the argumentyC is
not in the lexicon butwC = 1, the sum can be restricted

from all values ofyCnf 5g to the portion of the lexicon that
agrees with the argument valuey5 whenwB = 1. Furthermore,
when wB = 0, the factor is always one. In the last line, we
may push the sums over each character valuey6 and y7 in
against the corresponding messages. Because these messages
are normalized to sum to one in practice, these terms are
dropped, leaving us with a relatively simple sum over a subset
of lexicon terms. Calculating the message to character 5 for
all values of y5 involves a sum over all lexicon words of
the appropriate length. Messages to other character nodes
will have the same form, with the number of node-to-factor
messages in the product depending on the length of the word.

Only two values need to be computed for messages from
the factor to the word indicatorwB. When the string is not
a lexicon word (wB = 0), the value of the factor is always
1, and the sums over the remaining unknowns in (6) may be
pushed inside the product against their corresponding message
terms. This results in a product of node-to-factor message
sums. Since the messages are normalized, the product (and
thus the message value) is simply a constant 1.

When the string is a lexicon word (wB = 1), the product of
messages must only be evaluated at lexicon strings because
fC is zero when the string is not in the lexicon:

mC! B (wB = 1) = å y5y6y72L fW
C (y5;y6;y7;wB = 1) �

m5! C (y5) m6! C (y6) m7! C (y7) :
(22)

4 SPARSE BELIEF PROPAGATION

Although the sums for belief propagation (21) and (22) have
a complexity linear in the size of the lexicon, they can still
present a computational drag in practice. The top-down infor-
mation is very important for accurate recognition, so we use
a bottom-up scheme to speed the recognition process. Pal et
al. [16] propose a probabilistically motivated sparse inference
method that simpli�es the message passing calculations. The
central idea is to reduce the number of summands in such
factor-to-node messages by creating zeros in the node-to-factor
messages.

At every node, a belief state, or local approximate marginal
probability, is represented by the normalized product of mes-
sages to that node from its adjacent factors

bi (yi) µ Õ
C2N (i)

mC! i (yi) : (23)

During each iteration of loopy BP, each factor combines
information from its adjacent node arguments and returns
updates to them. As described above, the update for the lexicon
factor involves a sum over every word in the lexicon (of the
appropriate length), even those words containing characters
with low probabilities. We may therefore desire to eliminate
these unlikely lexicon words from consideration during the
belief update stage. The well-motivated approach given by Pal
et al. is to revise the local beliefs such that the largest number
of the lowest probability states are given zero probability,
subject to a constraint on the divergence of the sparse belief
from the original. In other words, consider the fewest number
of characters while staying close to the original beliefs. Em-
ploying this strategy, we expect to greatly reduce the amount
of lexicon scans for a given query.
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If bi represents the marginal belief for nodei in the graph,
our goal is to compress this distribution tob0

i such that it has
the maximum number of zero entries, subject to a divergence
constraint:

maximize å yi2Yi d(b0
i (yi) ;0)

subject to KL(b0
i k bi) � e;

(24)

where

KL
�
b0

i k bi
�

= å
yi2Yi

b0
i (yi) log

b0
i (yi)

bi (yi)
(25)

is the Kullback-Leibler divergence between the original and
compressed beliefs. This can easily be accomplished for
each node in timeO(jYi j logjYi j) by sorting the beliefs and
calculating the log cumulant. Once the sparse beliefb0

i is
calculated, the messages to the factorsmi! C (cf. Eq. (5) ) are
compressed to respect the sparsity ofb0

i and re-normalized.
These sparse node-to-factor messages are then subsequently

used to calculate the reverse factor-to-node messages. The
practical effect of sparse BP is that certain characters are
temporarily eliminated from consideration. For instance,the
visual and contextual evidence fory7 to be at may be so
low that it can be assigned a zero belief without greatly
changing the current local marginal. When this happens,
we may eliminate summands for any word whose second
character ist in the messages (21) and (22). Taken together,
pruning highly unlikely characters reduces the lexicon under
consideration from tens of thousands of words to just a few,
dramatically accelerating message passing-based inference.

In the original work on sparse BP, only a linear chain
graph was used. This topology permits exact inference and
requires messages only be passed once in each direction. Here,
a loopy variant is used. We note that depending on the order
of operations, characters need not be strictly eliminated from
possibility when a sparsifying step is taken. Speci�cally,if
outgoing messages to factors are made sparse in agreement
with the compressed disributionb0

i , this only means that terms
are dropped from the summation used to calculate messages to
other nodes. The return message is not sparse in general. Thus,
using sparse methods to “eliminate” characters means only
that we lose the in�uence of the dropped character hypotheses
upon their logically dependent nodes. The �nal belief at a
node (from which predictions are made) is calculated using the
most recent incoming messages from the factors, which are not
generally sparse. Therefore we have not necessarily committed
to a mistaken elimination of correct character hypotheses.In
fact, in some of our experiments, certain character hypotheses
are restored as information propagates through the graph.

The information-theoretic criterion for pruning states stands
in contrast to that of Coughlan and Shen [17]. In their dynamic
quantization algorithm, states are eliminated by thresholding
the beliefsbi (yi) � e and restored by keeping statesyC that
have high factor valuesfC (yC) � e. The former criterion may
not be stable when the marginal distributions are relatively �at,
having many states with equally low probability. The lattercri-
terion may not accurately re�ect information from elsewhere
in the model. By contrast, the KL-divergence criterion ensures
that a minimum total probability mass is maintained for each

Fig. 5. Examples of sign evaluation data illustrating (left-right)
regular fonts similar to those found in documents, unusual
regular fonts, and custom irregular fonts.

node's beliefs, and this is constantly updated as information
propagates through the graph.

5 EXPERIMENTS

In this section we present experimental validation of our
model on sign images containing previously unseen fonts and
non-lexicon words. The alphabet of characters recognized,Y,
consists of 26 lowercase, 26 uppercase, and the 10 digits (62
total).

We �nd that adding similarity reduces character recognition
error by 19%, whereas using it in a separate stage harms
accuracy. Adding the lexicon reduces word recognition error
by 35%. Using sparse BP eliminates 99.9% of the lexicon,
giving a 12X speedup with no loss in accuracy.

First we describe the data used in our experiments for
both training and testing, and then the procedures used to
train and evaluate the models. The section concludes with the
experimental results and a subsequent analysis and discussion.

5.1 Experimental Data

Because we have such a rich model involving many infor-
mation sources, there are many corresponding data sets for
training, including character images, English text corpora, and
a lexicon. We describe these after detailing the nature of the
primary evaluation data.

Sign Evaluation Data: Our evaluation data comes from
pictures of signs captured around a downtown area. There
are 95 text regions (areas with the same font) totaling 215
words with 1,209 characters. Many signs have regular fonts
(that is, characters appear the same in all instances) that are
straightforward, such as basic sans serif, and should be easily
recognized. Other signs contain regular fonts that are custom
or rarely seen in the course of typical document recognition.
Finally, there are a few signs with custom irregular fonts,
where repeated characters have a different appearance. These
pose the greatest challenge to the premise that similarity infor-
mation is useful. Examples of each of these three categories
are shown in Figure 5. The signs are imaged without extreme
perspective distortion—they are often roughly fronto-parallel.
Following the assumptions laid out in Section 3, we have
annotated our evaluation data with the approximate bounding
boxes for the characters.

Synthetic Font Training Data: We generated images of
each character in several commercially available fonts using
GIMP.2 Each image is 128� 128 pixels with a font height of
100 pixels (an x-height of roughly 50 pixels). No anti-aliasing
was used in the image synthesis and the bounding box of the
character is centered in the window.3

2. GNU Image Manipulation Programhttp://www.gimp.org .
3. Font images and sign evaluation data are publicly available at

http://www.cs.grinnell.edu/~weinman .
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Text Corpora: A corpus of English text was acquired
from Project Gutenberg4—82 books including novels, non-
�ction, and reference for a total of more than 11 million words
and 49 million characters (from our 62 character alphabet).

Lexicon: The lexicon we use is derived from SCOWL5

and contains 187,000 words including proper names, abbrevi-
ations, and contractions. Because our current model does not
account for word frequency in its lexical bias, we only use
those words in the list up to the 70th percentile of frequency
for our lexicon.

5.2 Experimental Procedure

In this section we describe the procedure used for training and
evaluating our model. We �rst outline the nature of the overall
model parameter training followed by details of training for
each component of the model. The section concludes with a
brief description of how the model is applied to the actual
image data for evaluation.

5.2.1 Model Training

The model parameters� =
�

� A � B � C � S qL
�

are
learned from the data outlined above. Typical parameter esti-
mation procedures in such discriminative joint models requires
labeled data involving all the information at once. In other
words, training data should be like the testing data.

The parameters� A, � B, � C , and � S are each learned
independently in the piecewise, decoupled fashion described
in Section 2.2, while the lexicon bias parameterqL is chosen
by cross-validation. Next, we detail the training procedures for
each of these parameter sets.

Appearance Model: The character image appearance
model parameters� A are trained on 200 fonts, and 800 fonts
are used as a validation set. We use a Laplacian prior [27],
[28]

p(� j a; I ) µ expf � a k� k1g; (26)

wherek�k1 is the`1 vector norm. The value of hyperparameter
a that yields the highest likelihood on the validation set is the
one used for optimizing the posterior for� A.

The �lter outputs for the 128� 128 training images are
downsized by a factor of four to 32� 32. Although some
information from the highest frequency �lters is lost, this
reduces the dimensionality of� A by a factor of 16.

The evaluation data is far from having perfect contrast (a
nearly 0/1 binary image). As a very simple alternative to
a more elaborate contrast normalization scheme, we scale
the training images so that the contrast (absolute difference
between background and character intensity) is 0.3.

Language Model: To avoid the need for performing
inference on large chains of text, we use piecewise training
(c.f., 2.2) to approximate the likelihood. The approximation is
especially advantageous for the bigram and case switch models
(11), (12), and (13), which do not depend on an observed
image. Thus, training instances may be collapsed into unique
cases and weighted by their frequency. For example, the corpus

4. http://www.gutenberg.org .
5. http://wordlist.sourceforge.net .

of 49 million characters contains nearly 780,000 occurrences
of the bigramth . Rather than doing inference on the entire
chain of text with an exact method, we need only do inference
once in a two-node chain forth and count it 780,000 times.

The books were split into two sets of roughly equal size,
one for training and one for validation. The (case-insensitive)
bigram counts were taken for each set, and the value of the
hyperparametera for the Laplacian prior (cf. Eq. (26) ) that
yields the highest likelihood on the validation set is the one
used for optimizing the posteriors for� B on the entire corpus.

In practice, we found that enabling the language model,
regardless of the value of the auxiliary word indicatorsw im-
proved accuracy over disabling it whenever the corresponding
wk = 1. Our results re�ect this aspect of the model.

Case model parameters� C use a uniform prior.
Similarity Model: Because the functionf S is one when-

ever its two character arguments have different labels and oth-
erwise has a functional value parameterized by� S (displayed
in Figure 4), we may equivalently learn the parameters for a
function f S that takes only a single argumenty with a label
of Same or Different. The piecewise training approximation
described above follows naturally because these characterpairs
are completely decoupled from any related stream of text.

To learn the similarity parameters� S we generated pairs
of the same character (in the same font) and pairs of dif-
ferent characters (also in the same font) with the following
procedure. First, we select a font and a character uniformlyat
random. To produce a similar character, we generate a random
linear transformation with rotationq � N (0;1� ), scale factors
sx;sy � N (1;0:01), and skew factorsr x; r y � N (0;0:005).
This transformation is then applied to the original image.
To produce a dissimilar pair, a different character is chosen
uniformly at random. We choose a different character from
the same font, having assumed the input is from a single font.
Such characters are likely to be more similar than different
characters from different fonts, allowing a better and more
appropriate threshold to be learned. Additive Gaussian noise
e � N (0;0:01) is added to the original and transformed
images prior to Gabor �ltering. Unlike for the appearance
model, the full-size (128� 128) �lter outputs are used to
calculate the distanceki j between images. The �ner details
are useful for these comparisons, and the dimensionality is
not an issue sincef S only has three parameters.

For optimal predictive discrimination, the ratio of same to
different pairs in the training data should be the ratio we
expect in testing data. Toward this end, we sample small
windows of text from our corpus. The window length is
sampled from a geometric distribution with a mean of 10
characters and length at least 3; these parameters are chosen
based on our expectation of sign contents. In 10,000 samples,
the same/different ratio is consistently about 0.057. Thisratio
controls the relative number of similar and dissimilar pairs we
generated (100,000 total).

Similarity model parameters� S use a uniform prior.
Lexicon Model: We found acceptable performance for

models conditioned onIA; IB; IC; IS with corresponding pa-
rameters found in the decoupled piecewise fashion detailed
above. One way of doing this for the bias parameterqL is to
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use our English corpus, using each word from the text as a
training instance withw = 1 if it is in our lexiconL andw = 0
otherwise. We found that decoupling the learning ofqL in this
way does not yield a strong enough lexical bias to improve
results as originally hoped, so we turn to a cross-validation
strategy to “re-couple” the parameter learning.

To addIL to the model, we keep all other parameters �xed
at their values learned from decoupling. The 95 regions in the
evaluation sign data are randomly split into ten subsets. In
a ten-fold cross-validation procedure, we iteratively held out
one set for testing. Several values ofqL are used, and the one
with the highest word accuracy on the nine training sets is
then applied to the test set for evaluation.

We can also force the model to always predict words from
the lexicon by adjusting the biasqL to � ¥ . We will useIL

� ¥
to indicate such a closed-vocabulary assumption.

Sparse message passing as proposed by Pal et al. [16]
was created for BP in a chain-structured graph where a
well-de�ned forward-backward schedule for message passing
achieves exact inference. While the graph based onIA; IB; IC

is a chain, adding the lexical informationIW makes this
graph not only not chain-structured, but cyclic. Thus, the
results of BP will not be exact in general. It is onlyIW

that is truly problematic from a computational standpoint.The
other messages—of which there are only a few—only require
complexity of at mostO

�
Y2

�
, which is substantially less than

the messages from the lexical factor. For this reason, we run
BP in a phased schedule, only sending any lexical factor to
node messages after the others have converged. Once these
messages have converged, we have the best possible local
marginals on the available information, exceptingIW and IL.
We then use these beliefs for computing the sparsity of the
character statesy. This sparsity is calculated once, then the
lexical informationIW; IL is introduced, and the same sparsity
structure is maintained. Belief propagation then continues
until the termination criterion is reached (convergence oran
iteration limit).

This phased processing has two advantages. First, because
messages are passed within a limited portion of the model
until convergence, the beliefs used to calculate sparsity should
be more reliable since the available information has �owed
throughout the graph. This stands in contrast with the alterna-
tive of doing state pruning with the initial beliefs, which will
only be based on factors immediately adjacent to the nodes.
Longer distance dependencies certainly exist in these types
of models, and these could have an effect on the sparsity
and correctness of the approximate beliefs. The second and
arguably more important advantage is that it avoids the need
to make a complete lexical scan required in the messages
from the lexical factor. Since the messages are initialized
to uniform, the lexical factor merely ends up contributing
positional unigrams to the initial belief. This is not worththe
cost of the lexical scan and could be modeled directly if we
wished. Returning to our initial point, we prefer to use the
best available information before incorporating the lexicon.

We usee= 10� 7 as the divergence bound for sparse BP. This
corresponds to keeping nearly all of the probability mass (e� e)
for each character. The runtime was sensitive to this, sinceit

TABLE 1
Recognition results (percentages) of the uni�ed model (top)

and clustering followed by recognition and voting (bottom) with
varying information. Overall character accuracy, false negative
(FNR), false positive (FPR), and hit rates (HR) for pairs (see

text) are given.

Information Char. Accuracy FNR FPR HR
IA 84.04 11.42 0.51 91.07

IA; IS 84.04 11.42 0.51 91.07
IA; IB 87.92 9.14 0.53 93.81
IA; IC 87.92 8.79 0.87 94.03

IA; IB; IC 91.65 6.85 0.66 98.68
IA; IB; IC; IS 93.22 5.45 0.14 99.26

IS - 22.67 0.25 -
IS ! IA 83.54 7.03 0.69 88.28

IS ! IA; IB 87.92 4.39 0.80 91.73
IS ! IA; IC 87.76 5.80 1.02 92.72

IS ! IA; IB; IC 91.40 3.69 0.88 97.26

controls the amount of pruning, but we found accuracy was
not.

5.2.2 Model Application

Here we add a few additional details of how the evaluation
images are processed for the model. The height of the input
characters in the evaluation data is normalized so that the font
size is roughly that of the appearance training data. Only �lter
responses from within the annotated bounding box of each
character are used when calculating the factors for appearance
f A and similarity f S; image areas outside the bounding box
are zeroed out. Note that Gabor �lters are applied to the actual
grayscale image; no binarization is performed.

5.3 Experimental Results

Here we describe the performance of several variants of
our model on the evaluation data, as well as alternatives
from prior approaches to challenging character recognition
problems. First, we demonstrate the impact of using similarity
information in a uni�ed model for recognition. Then, we
investigate how incorporating a lexicon affects results.

5.3.1 Uni�ed Similarity

Prior work using similarity incorporated this informationin
a processing stage separate from that using character appear-
ance. Here we will compare our uni�ed model to the approach
of Breuel [4], [5], where characters are �rst clustered using
the degree of similarity as a distance metric. Following this
approach, to cluster letters, we maximizep

�
y j x;b� ; I ; IS

�
for

y via simulated annealing, initialized at the prediction derived
from IA (the strategy taken by Breuel [4]). The identity of
each cluster is then chosen by using the classi�cation of each
character derived from other models (sansIS) as a vote. Ties
are broken by choosing the label whose members have the
lowest average entropy for their posterior marginal, a strategy
that slightly outperforms random tie breaking.

Table 1 gives the results of the uni�ed model using different
combinations of appearance informationIA, language infor-
mationIB; IC, and similarity informationIS. It also shows the
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Fig. 6. Examples from the sign evaluation data that are read
correctly with IA; IB; IC; IS.

Fig. 7. Challenging signs from the evaluation data that have
unique fonts, are hand-painted, or contain three-dimensional
effects, real and virtual.

results when the similarity information is used �rst to cluster
the characters, and the other information (used separately) is
then used to vote on character identities. Character accuracy
is the percentage of characters correctly identi�ed (including
case). To evaluate the ability of our model to recognize
different instances of the same character in the same font,
for intra-sign and intra-font characters we measure:

� False negative rate:Percentage of character pairs that
are the same but are given different labels.

� False positive rate:Percentage of character pairs that are
different but are given the same label.

� Hit rate: Percentage of character pairs that are the same,
given the same label, and correct (correctly labeled true
positives).

For the modelIS, only false negative and positive rates may
be reported as cluster purity measures. Figure 6 contains
examples of signs correctly read, and Figure 7 shows examples
from the evaluation set that are more dif�cult.

5.3.2 Lexicon-Based Model

In addition to the uni�ed similarity model, we also test the
effect of the integrated lexicon and the impact of using sparse
BP. Table 2 compares the character and word accuracy for our
model with varying amounts of information. For comparison,
the output of our best lexicon-free model is passed through
the spell-checker Aspell, keeping the top suggestion. Figure 8
shows results on example data of varying dif�culty, including
where corrections were made and errors introduced.

We show in Figure 9 (top row) the histogram of how
many characters remain possible after belief compression with
sparse BP for several of the models. The elimination of
many characters from consideration excludes certain words
in the lexicon with characters in particular positions. The
resulting reductions in length-appropriate lexicon wordsare
shown in the bottom row of histograms of Figure 9. Different
word lengths have differing numbers of possible words in the
lexicon, so we give length-speci�c lexicon size-normalized
values. However, to illustrate the raw impact we also give
the median absolute size of the resulting lexicon.

Table 3 compares the accuracy of full loopy BP and the
sparse variant used to speed up prediction on the two best

TABLE 2
Word and character accuracy with various forms of the model.

Information Char. Accuracy Word Accuracy

IA 84.04 46.05
IA; IB; IC 91.65 75.35

IA; IB; IC; IS 93.22 78.60
IA; IL; IW 93.63 72.56

IA; IL
� ¥ ; IW 91.56 68.84

IA; IB; IC; IL; IW 93.88 85.58
IA; IB; IC; IS; IL; IW 94.62 86.05
IA; IB; IC; IL

� ¥ ; IW 92.39 81.40
IA ! Aspell 73.78 53.49

IA; IB; IC ! Aspell 89.50 77.21
IA; IB; IC; IS ! Aspell 90.98 79.07
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Fig. 9. TOP: Histograms of character state space size after
belief compression. BOTTOM: Histograms of lexicon words (per-
centage) considered after belief compression. LEFT: Appear-
ance only model IA; IL; IW. CENTER: Appearance and language
model IA; IB; IC; IL; IW. RIGHT: Full model with appearance,
language, and similarity IA; IB; IC; IS; IL; IW.

models, one with similarity and a lexicon, and one with only
the lexicon. We also compare the relative speed of these two
models and the different inference techniques in Table 4, as
measured by the geometric mean of time per character (to
normalize for query length) on the signs [29].

5.4 Discussion

5.4.1 Similarity Model

Figure 6 contains examples of signs correctly read without the
lexicon, showing that the features are robust to various fonts
and background textures (e.g., wood and brick). Although the
number of characters per sign is small compared to OCR
applications, adding similarity information undoubtedlyim-
proves character recognition accuracy, reducing overall char-
acter error by nearly 20% (Table 1). Not surprisingly, most
of this improvement comes from greatly reducing the cases
when different characters are given the same label (pair false
positives).

Perhaps surprisingly, adding similarity informationIS to
the simple image informationIA does not alter the results.
This is probably because test images have relatively little
noise and are mostly dif�cult due to font novelty and non-
fronto-parallel orientations. Therefore, it is expected that the
same characters, though novel, would often be given the same
label in different locations, due to their logical independence
solely with informationIA. However, when other sources of
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Image No Lexicon Lexicon Forced Lexicon Aspell
USED BOOKI USED BOOKS USED BOOKS USED BIOKO

Free crecking Free checking Free creaking Frag recurred

31 BOLTWOOD 31 BOLTWOOD SI BENTWOOD 31 BELLWOOD

RELAmo3 RELAmo3 DELANOS Reclaim
HTOR UP5 HOOK UPS HOOK UPS THOR UPI

MAOUGRY ARAIN MAOUGRY ANTIN LATHERY ANTIN MARGERY AARON
RERTTRE RERTTRE RESTORE RETRIER

Fig. 8. Example recognition results on dif�cult data. Correct wo rds indicated in bold. Model examples are IA; IB; IC; IS (No Lexicon),
IA; IB; IC; IS; IL; IW (Lexicon), IA; IB; IC; IS; IL

� ¥ ; IW (Forced Lexicon) and IA; IB; IC; IS ! Aspell (Aspell).

TABLE 3
Accuracies under sparse and full BP.

Char. Accuracy Word Accuracy
Information Sparse Full Sparse Full

IA; IB; IC; IL; IW 93.88 93.63 85.58 84.19
IA; IB; IC; IS; IL; IW 94.62 94.38 86.05 86.05

TABLE 4
Relative speeds of models with full and sparse BP.

Model and Inference Mean Relative Speedup
No Similarity; Full vs. Sparse 19.53

Similarity; Full vs. Sparse 12.15
No Similarity vs. Similarity; Sparse 0.57

information are introduced to help resolve ambiguity, the
similarity information does make a difference because the
bigram and case information are based on local context. These
can push the beliefs about characters in different directions,
even though they tend to look the same, because their contexts
are different. Adding the similarity information on top of these
other sources ensures that the local context does not introduce
a contradictory bias. In the example of Figure 1, adding bigram
information pushes the seconde to ana because preference for
theea bigram outweighs bothee and the character appearance
factor. Similarly, adding case information pushes thel from
being recognized as the upper caseI to lower caset ; due
to kerning in this italic font, some of theF overlaps in the
l 's bounding box, leaving a little crossbar indicative of at .
Finally, adding the similarity information corrects thel since
it is very different from the �nalt , and corrects thees since
they are very similar.

All of the differences in accuracy for the uni�ed model
(Table 1) are statistically signi�cant.6 In particular, adding
the similarity informationIS to IA; IB; IC reduces character
classi�cation error by 19%. While the reduction of false
negatives is not signi�cant with the addition ofIS, the false
positives are cut by 79%. When the uni�ed model is compared
to the pipelined clustering approach, the differences between
IA; IB; IC; IS and IS ! IA; IB; IC are signi�cant for character
accuracy, false negative rate, and false positive rate.

The results of clustering the letters prior to recognition ap-
pear worse than doing recognition outright with no similarity

6. In all cases, signi�cance is assessed by a paired, two-sided sign test on
the accuracy per query; signi�cance is determined byp < 0:02.

information. However, unifying all the information available—
including similarity— does yield better results than a distinct
clustering step. It is interesting that clustering yields fewer
false negatives than the uni�ed approach. This is most likely
because clusters are not forced to have different labels at
the secondary assignment stage. Thus, instances of the same
character assigned to different clusters are not forced to have
different labels (up to the fact that there are only as many
clusters as characters in our alphabetY). Indeed, if thiswere
the case, the false negative rate would be intolerably high.
Conversely, the clustering pre-processing step does commit
unrecoverable errors by pairing characters that are not the
same; subsequent information cannot reduce the false positive
rate. This is especially critical because the probability of two
characters being the samea priori is much smaller than their
being different, thus the false positive rate has a greater impact
on total errors than the false negative rate.

Some signs in our data set present tremendous dif�culty
and challenge the assumption that characters of the same
“font” appear similar. Some of these are due to rendered
warping effects, custom fonts, or inconsistent shadow effects
(see Figure 7). Other signs just have unique fonts that are very
different from those in the training set.

5.4.2 Lexicon Model and Sparse Belief Propagation

Here we discuss the results of adding the lexicon, some of
which are shown in Figure 8.31 and BOLTWOODare not in
the lexicon, so errors arise with the forced lexicon and Aspell
models.DELANOSis in the lexicon, but the image evidence
overpowers the bias in this case; forced to be a lexicon word,
it is correctly interpreted. The last two images exemplify some
of the more dif�cult text in our data set.

Incorporating the lexicon factor boosts the character ac-
curacy, but adding the language model (i.e., bigrams) after
the lexicon seems to have little impact. However, the word
accuracy reveals a 41.5% error reduction with the inclusion
of the lexicon. Results do improve over an appearance-only
model when words are forced to be from the lexicon, but
some proper nouns and numbers in the data are not lexicon
words and thus are misinterpreted. Using Aspell �xes some
simple errors, but most errors are more complex. Ignoring the
character image for poorly recognized words tends to reduce
overall character accuracy (since poor suggestions are made).
We also experimented with trigrams and word frequencies
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(i.e., using a word-speci�c value forUW), but found no
improvement in word accuracy on our evaluation data.

As accuracy gets close to 100%, more data is required
for signi�cant improvements to be shown. However, instead
of comparing accuracies—the outcome of a decision rule–
comparing the likelihoods of the data is more direct way
of showing model improvement. When the likelihood of the
correct character string is higher in one model than the other,
it demonstrates that there is indeed additional information
contributed. In this case, when the similarity is added to
a model already using a lexicon, the log likelihood ratio
improvement is signi�cant (the character accuracy increases
from 93.88 to 94.62). The average improvement is

2

4
N

Õ
k= 1

p
�

y(k) j x(k) ; b� ; I ; IA; IB; IC; IS; IL; IW
�

p
�

y(k) j x(k) ; b� ; I ; IA; IB; IC; IL; IW
�

3

5

1
N

� 3:87: (27)

In other words, the data is nearly four times as likely when
we add similarity information. This signi�cantly moves the
probabilities in the “right direction” relative to the decision
rule.

Sparse BP speeds the lexicon integration by eliminating
characters from consideration after belief compression (Figure
9). This results in a 99% reduction of candidate lexicon words
overall. We must consider different lexicon words for strings of
different lengths. The median elimination of candidate words
for each string was 99.97% (Figure 9), or just 6 remaining
candidates when not normalized for the differing sizes of the
original candidate lists. Table 3 shows that using sparse BP
yields no signi�cant difference in accuracy. However, there is
a very large speed improvement (Table 4), from about 1.36s
per character to 0.11s in the complete model.

With sparse BP, adding the similarity information slightly
increases the (already greatly reduced) inference time be-
cause there are now more factors to pass messages among.
Fortunately, the additional similarity information does make
character beliefs more certain, allowing more characters and
lexicon words to be pruned (Fig. 9). This keeps the additional
message passing overhead to a minimum while providing the
bene�t of a more accurate model.

6 CONCLUSIONS

We have laid out a general framework for recognition that
is probabilistically well-motivated and can accept long range
information in a uni�ed fashion. The conceptual advantage
provided by discriminative Markov models easily allows one
to imagine and implement a relationship among the unknowns.

Our principal contributions are as follows. First, we have
constructed a model that allows uni�ed processing of several
important pieces of information (appearance, language, sim-
ilarity to other characters, and a lexicon). Second, we show
how a similarity function can be learned and integrated so
that recognition is improved and more consistent with small
samples of novel fonts. Finally we have proposed a simple
construction that incorporates a lexicon into the model and
facilitated its use by applying principled sparse methods.

The basic discriminative framework for character recogni-
tion is not new, but it has typically been relegated to individual
characters. Language information is usually employed after
recognition in a post-processing clean-up. Most prior models
integrating language with recognition have been generative,
whose independence assumptions often prohibit them from
using richer features of the data (observations). A recent
exception by Jacobs et al. [10] is a discriminative model, but
forces recognition output to be lexicon words. In contrast,our
model allows a smooth trade-off between the interpretationof
a string as a known word, or some other string.

Classi�er adaptation is a useful strategy for recognition.
However, when recognizing signs or scene text, there is a scant
amount of data, and it is generally insuf�cient for reliableuse
with the existing methods for coping with novel typefaces. Our
recognition strategy improves on two issues lacking in previ-
ous approaches. First, by simultaneously incorporating char-
acter identity and similarity information in a uni�ed model,
we eliminate the need for distinct clustering/recognitionsteps
and the potential for unrecoverable errors. Second, we treat
similarity and dissimilarity as two sides of the same issue,
which prevents dissimilar characters from being given the
same label.

It has long been known that the use of a lexicon can
improve recognition accuracy. Although some computational
tricks exist, the size of a lexicon can often be prohibitive for
processing that integrates recognition, rather than usingit as a
post-processing step. Our model provides a natural, practical
testbed for the sparse inference methods proposed by Pal et
al. [16] for acyclic models. This has the advantage over the
traditional approach, which is to prune to one possibility for
higher-level processing or to use a moread hoc method to
consider a reduced number of alternatives. By eliminating
characters from outgoing messages in a principled fashion,
we are able to drastically reduce the size of the lexicon
that is used for a given query. This does not necessarily
mean that characters are eliminated from possibility, since the
incoming messages—from which beliefs are calculated—are
not generally sparse. We have also introduced lexical decision
into a model that also includes other important linguistic cues,
such as bigrams.

In this article, we have presented a model for character
recognition that ties together several important information
sources. We have shown that the uni�ed model clearly im-
proves results over pipelined processing. No doubt many
opportunities exist to add other information sources. A richer
character recognition model could easily be incorporated to
boost accuracy, and higher ordern-grams for both characters
and words could be added. All manner of language models
could be considered, and there is likely much mileage to be
gained by integrating these with the recognition process, rather
than using them as post-processors.
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