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Abstract

Density estimation arises in a wide range of vision problemsand methods which can deal
with high dimensional image features are of great importance. While in principle a non-
parametric distribution can be estimated for the full feature distribution using Parzen win-
dows technique, the amount of data to make these estimates accurate is usually either
unattainable or unmanageable. Consequently, most modelers resort to parametric models
such as mixtures of Gaussians (or other more complicated parametric forms) or make in-
dependence assumptions about the features. Such assumptions could be detrimental to the
performance of vision systems since realistically, image features have neither a simple para-
metric form, nor are they independent.
In this paper, we revive non-parametric models for image feature distributions by finding
the best tree-structured graphical model (using the Chow-Liu algorithm) for our data, and
estimating non-parametric distributions over the one- andtwo-node marginals necessary to
define the graph. This procedure has the appealing property that, if the tree-structured model
represents the true conditional independence relations for the features, then our estimated
joint distribution converges rapidly to the true distribution of the data. Even when this is
not true, it converges to the best possible tree-structuredmodel for the original distribution.
We illustrate the effectiveness of this technique on simulated data and a real-world plankton
classification problem.

1 Introduction

Modeling the joint distributions ofcontinuousimage features is a difficult task since in most applicationsonly
a relatively small number of samples are available for a high-dimensional distribution. In principle, if we
had an infinite number of samples, we could estimate the true joint distribution over all the features using
a kernel density estimation (KDE) technique such as Parzen windows [20, 9]. In a standard classification
setting, we could use the estimated class conditional densities to build a classifier that attains the Bayes error
rate. However, in reality, the required number of samples iseither unattainable or unmanageable. This has
led many to conclude that non-parametric techniques are notviable and are impractical for high-dimensional
distributions. Consequently, most modelers resort to making simplifying assumptions about their distributions
such as:

• Restricting their form to simple parametric distributions. While such assumptions reduce the variance
of density estimates, they do so at the cost of higher bias, since typically, true distributions (at least
for continuous image features) are not well fit by these simple parametric forms.

• Assuming the features are independent. Now the joint distribution factors into the product of one-
dimensional distributions which can be estimated accurately using KDE. This may result in good



Figure 1: An example of a learned tree model. This graph showsthe learned dependencies between 20 features
for one of the classes in the phytoplankton data set. See Section 6.1 for a brief description of the features. The
edges on the graph connect the features that have the maximumdependencies or greatest mutual information.
The connections in the graph match intuitions, for the most part, about which features should have the highest
mutual information, such as the edge between EigenRatio andEccentricity and the edge between Area and
Perimeter. Note furthermore that this is a graph overcontinuous, not discrete, random variables.

estimates of marginal feature distributions, but a poor model for the joint feature distribution, since
the assumption of total feature independence is seldom evenapproximately realized.

• Discretizing the feature space. This procedure is problematic, because small changes in the bin size
can have a profound effect on the observed probability mass function. A further difficulty is that if the
bin width is chosen small enough to capture local structure,then, even in two dimensions, the total
number of bins becomes so large that random error effects arelikely to become dominant [20].

In this paper, we revive non-parametric models for image feature distributions by finding the optimal tree-
structured graph (see Figure 1) using the Chow-Liu algorithm [6], and estimating non-parametric distributions
over the one- and two-node marginals necessary to define the graph.

More specifically, we propose a simple procedure for effective MAP classification using tree-structured non-
parametric distributions:

1. Obtain a training set of labeled data for each class.

2. For the points in each class, learn a tree structured graphthat spans the strongest dependencies among
the features.

3. Estimate a non-parametric, but structured, probabilitydensity for each class based upon the learned
tree-structured graph for that class.

4. Evaluate the likelihood of each class by evaluating its probability density under the estimated distri-
bution.

There are two very appealing properties of this model. First, as the amount of training data grows, our non-
parametric estimate will become closer and closer (and ultimately converge) to thebest possible approxima-
tion (in the sense of Kullback-Leibler [7] divergence) of the true distribution over all possible tree-structured
distributions.1 This includes not only parametrically structured tree distributions, but all non-parametric tree-
structured distributions as well. If the tree-structured graph represents the true conditional independence rela-
tions for the features, then our estimated joint distribution converges to the true distribution of the data. Second,
by restricting our attention to tree-structured distributions, each distribution can be expressed as a simple func-
tion of the one- and two-node joint distributions of the features. By limiting the factors of the joint distribution
to two dimensions, we ensure that our non-parametric estimates of these factors converge rapidly, and can be
reasonably estimated with practically sized data sets.

1This is a simple consequence of the optimality of the Chow-Liu algorithm and the statistical consistency of non-
parametric density estimates.



In the following section, we describe previous versions of this model in the machine learning and geosciences
communities, and explain the main differences with the one we present here. It is important to keep in mind that
the main purpose of this paper is not to describe a newly developed model, but to thoroughly analyze a variant
of an existing tool to reveal its wide applicability for the vision community. From our results on plankton
classification (as discussed in Section 6) we conclude that estimating the joint distribution by a tree-structured
graph produces better estimates than using parametric distributions. We believe that these models could be
utilized more often in the field, and we provide experimentalresults on simulated distributions and a real-world
plankton classification problem. We hope that the outcomes of these experiments convince the reader of the
powerful properties that these models possess and their wide range of potential applications.

2 Related Work and Our Contributions

In their original paper, Chow and Liu [6] showed that the graphical model represented by the maximum span-
ning tree of the fully connected graph whose nodes are the random variables (or features) has the closest
Kullback-Leibler (KL) divergence to the true joint distribution than any other tree-structured distribution. This
result requires that the edge weight between any two nodes beequal to the mutual information between the
features represented by those nodes. Although their proof was for discrete random variables, their argument
scales to continuous random variables (see [2] for a formal proof). They used their algorithm to estimate
class-conditional densities in a Bayesian classifier used to classify gray-scale images of digits.

More than 20 years later, this procedure for constructing a Bayesian classifier was named Bayesian Multi-nets
by the the machine learning community [10, 11]. Friedmanet al. [10] also introduced the Tree Augmented
Network classifier, which uses the data points from all the classes to learn one tree structure for all the classes
(as opposed to a potentially different graph for each class). Since then, a large number of structure learning
algorithms have been proposed in the literature [12] and more recently researchers have been interested in
comparing and contrasting generative and discriminative methods to structure learning (see [17] for a review).
However, most of the previous work [10, 11, 12, 17, 1, 14] (with a few exceptions [2, 13]) assume a discrete
feature space.

Perhaps the only notable exception is Bach and Jordan [2]. Bach and Jordan [2] proposed a generalization
of independent components analysis (ICA) were instead of looking for a transform that makes the data com-
ponents independent they look for a transform that makes thedata components well fit by a tree-structured
distribution. With respect to density estimation, their experiments on simulated data showed that transforming
the distribution to better fit a graph structure and then estimating the one- and two-node marginals of their graph
non-parametrically produced the best estimates.

Datcuet al. [13] is perhaps the first and only other work that applies the Chow-Liu algorithm on continuous
image data while using kernel density estimation to estimate the one- and two-node marginals. However, their
paper overlooks some of the issues involved with KDE such as bandwidth selection and the consistency of the
marginals (see Section 4.2).

3 Background

In this section we review some background material regarding naive Bayes and tree-structured distributions
before describing details of our method. We begin with a labeled data set consisting ofn real valued feature
vectors inℜd and their corresponding class labels.{c1, c2, ..., cm} represents the set of class labels for an
m-class problem.

3.1 Naive Bayes

Naive Bayes assumes that all of the features are conditionally independent given the class,i.e.

P (x|ci) =

d
∏

j=1

P (xj |ci). (1)

The graphical representation of the Naive Bayes model (for the class-conditional distribution) would represent
the features as nodes without any edges. This assumption produces an estimate of the distribution that has
lower variance (but higher bias) than estimating the joint distribution directly. We discuss this bias/variance
trade-off in more detail in Section 6. Since image features are rarely independent, the estimated density under
the Naive model will tend to be an inaccurate estimate of the true underlying distribution.



A

B C

D

E

(a)

A

B

C

(b)

E D F G

BA

C

H

I

I

(c)

Figure 2: Examples of tree-structured graphs. a) An exampleof a 5-node tree-structured graph. b) A graphi-
cal model representing the exact conditional independencerelations in our synthetic 3-dimensional Gaussian
distribution (see text). c) A graphical model representingan approximation to the conditional independence
relations in our synthetic 10-dimensional Gaussian distribution (see text).

3.2 Tree-structured Distributions

A tree-structured distribution is one in which dependencies are represented by a tree-structured graph (see
Figure 2(a)). To write the joint probability function for a tree-structured model, any vertex can be declared
as the root and a directed tree can be formed by assigning arrows to point away from the root. Thus, we can
define the joint probability as the product of conditional probabilities, where each term becomes a conditional
distribution of a node given its parent in the directed tree.For example, the joint distribution represented by the
tree graph in Figure 2(a) can be written

P (X) = P (XA)P (XB|XA)P (XC |XB)P (XD|XC)P (XE |XC) (2)

=
P (XA, XB)P (XB, XC)P (XC , XD)P (XC , XE)

P (XB)P (XC)P (XC)
. (3)

The general form for the joint distribution on a graph is [19]

P (X) =

∏

{i,j} P (Xi, Xj)
∏

k P (Xk)(dk−1)
, (4)

where the set{i, j} denotes the set of all the edges in the graph (n− 1 edges),k simply iterates through all the
marginals anddk is the degree of nodek.

A tree model for a set of mutually independent features is equivalent to a Naive Bayes model (through the
definition of independence). For example, if all of the nodesin Figure 2(a) were mutually independent, then
the tree-structured distribution,P (X) becomes

P (X) =
P (XA)P (XB)P (XB)P (XC)P (XC)P (XD)P (XC)P (XE)

P (XB)P (XC)P (XC)
(5)

= P (XA)P (XB)P (XC)P (XD)P (XE), (6)

a Naive Bayes model. This means that, at worst, if we model independent features, the tree estimate of the
joint distribution will be as good as the Naive Bayes model. This implies that, modeling dependencies between
features using a tree-structured distribution will never perform worse than a Naive Bayes model. Unless of
course we have an extremely small sample size that the one-node marginals for the Naive Bayes model are
estimated much better than the two-node marginals in the tree distribution.

It is important that the estimates for the one- and two-node marginals be consistent. By consistent we mean
that marginalizing the joint should give us the same distribution as estimating the marginal directly from the
data. If the one- and two-node marginals are inconsistent then the conditional distribution would not be a true
density. Inconsistency arises if we have poor estimates of the joint and marginal distributions which usually
occurs if not enough data is present. We discuss this in more detail in Section 4.2 and describe a method for
enforcing consistency.

4 Algorithm

We now overview our algorithm and discuss specific details inlater subsections. We perform the following
two steps for each class separately, where at each iterationwe only use the data points that belong to that class.



The first step computes the maximum spanning tree and the second estimates the necessary non-parametric
distributions that define the graph.

Step 1 - Maximum Spanning Tree: The first stage of the algorithm is to compute the maximum span-
ning tree specific to the class. Before, we do that we need to compute the symmetric cost matrix between
all of the nodes (i.e. the edge weights). As mentioned earlier, the edge weights are defined as the mutual
information [7] between the features represented by the nodes. Thus, entry(i, j) of the cost matrix,C is
defined as

Cij = I(Xi; Xj) = Cji, (7)

whereI(Xi; Xj) is the mutual information between featuresXi andXj . Now given the cost matrix, we run
one of the standard maximum spanning tree algorithms to get asubset of edges that characterize the undirected
acyclic model for this class.

Step 2 - Tree Density Estimate: The next step is to estimate the class conditional density given the
optimal tree structure computed in the previous step As we can see from equation (4), we need to estimate
non-parametrically the 2-node marginals between the features connected by an edge and the 1-node marginals
for the nodes that have a degree of2 or higher. At test time, when we are provided with a feature vector, we
compute the likelihood of its various components under the different joint and marginal density estimates and
then apply equation (4) accordingly to get the likelihood ofthe class given that data point.

4.1 Non-parametric Density Estimation

As mentioned earlier we need to estimate the distribution from samples non-parametrically. In this section we
briefly review KDE.

In a nutshell, KDE involves, placing a kernel at each sample point and then using the data to optimize the
parameters for the kernels. The probability density function (PDF) is then defined as the normalized sum of all
the kernels. The most appealing property of non-parametricestimates is statistical consistency. That is, as the
number of sample points increases, the estimated density will become closer and closer to the true underlying
distribution, eventually converging to the true distribution. Parametric and semi-parametric models do not
possess this property. For example, if we are assuming that abimodal distribution is a Gaussian, an infinite
number of points will not converge the estimated Gaussian distribution to the true bimodal distribution.

When attempting to estimate a density non-parametrically,two main choices need to be made. The first is the
type of kernel that will be placed at each point. In all of the experiments in this paper we use a Gaussian kernel.
The second

• The first is the type of kernel that will be placed at each pointwhich is problem-dependent. In all of
the experiments in this paper we use a Gaussian kernel.

• The second is how the kernel parameters (in the case of a Gaussian it is the covariance matrix) will
be computed. Again, several choices exist, such as Parzen windows [20]. The approach enforces the
same circular kernel for all of the data points. Thus, there is only one parameterσ (i.e.Σ = σI), which
is set such that the mean log likelihood of every point is maximized using a leave-one-out scheme.

It is important to note that the statistical consistency of non-parametric density estimation holds for any choice
of a kernel (e.g.Gaussian, Rectangular, Epanechnikov), even if it is restricted to being circular. In the following
subsection we discuss the consistency of marginals and derive a method for estimating the kernel parameters.

4.2 Consistency of Marginals

It is essential that the one- and two-node marginals that form the tree distribution be consistent, otherwise the
conditional distributions would not be true densities. Given that we enforce circular kernels (i.e. diagonal co-
variance matrices) in our density estimates, consistency in this case implies that the variance along a dimension
in a two-node marginal should be equal to the variance of its one-node marginal. For example, consider the
model depicted in Figure 2(b). The joint distribution of allthree features under this model is

P (XA, XB, XC) =
P (XA, XB)P (XB, XC)

P (XB)
. (8)

Thus enforcing the consistency condition requires that thevariance ofXB under both joints and the marginal
be approximately the same. Note that issues regarding inconsistencies only arise when we do not have enough
data points.



To enforce consistency, we set the diagonal covariance matrix of the two-node marginals to the variances of the
component one-node marginals. Thus, the covariance matrixfor an arbitrary two-node marginalP (X, Y ) is

Σxy =

[

σ2
x 0
0 σ2

y

]

, (9)

whereσ2
x is the variance of the one-node marginalP (X) andσ2

y is the variance of the one-node marginal
P (Y ). This is justified by the fact that marginalizing a bivariateGaussian with a covariance matrix of the
above form results in two univariate Gaussians (one with varianceσ2

x and another with varianceσ2
y) which

implies consistency.

Now we need to optimize then variance parameters for the tree. Ideally, we should selectthen parameters
such that the mean log likelihood of every point (under the tree distribution) is maximized using a leave-one-
out scheme. However, for high-dimensional feature spaces this method becomes computationally expensive.
Alternatively, we maximize each of the variance parametersindividually using the Parzen windows technique
and then we introduce a single multiplicative constantk to add another degree of flexibility to our model. This
constant allows us to change the variance values for all of the one-node marginals by a constant factor. We
optimizek such that the mean log-likelihood of the data points under the model is maximized using a leave-
one-out scheme. This allows us to use the structure of the tree to influence the variances while avoiding a
complex optimization procedure.

4.3 Estimating Mutual Information

When computing the cost matrix, we need to compute the mutualinformation between random variables. The
mutual information between two random variablesX andY is defined as

I(X ; Y ) = h(X) + h(Y ) − h(X, Y ), (10)

whereh(X) andh(Y ) are the differential entropy [7] of the marginal distributions andh(X, Y ) is the differ-
ential entropy of the random vector(X, Y ). Since we only have samples from a distribution (i.e. its exact form
is unknown) we cannot solve for exact marginal and joint entropies. One could resort to assuming a specific
parametric form or discretizing the data, but such procedures either misrepresent the data or throw away a lot
of information. Thus, we use the resubstitution estimate ofentropy [3], which does not make any assumptions
about the data. Under this estimate, the entropy (in nats) ofa distribution givenk samples from that distribution
is

ĥk = −1

k

k
∑

i=1

lnfk(xk), (11)

wherefk is a non-parametric density estimate of thek sample points.

5 Synthetic Data

In this section we support the claims that a tree model will always better approximate the joint density than
the Naive Bayes model. We also test that the tree model converges to the best possible estimate of the true
distribution much faster than estimating the joint distribution directly.

We generated samples from a known multivariate distribution. In the first test, we chose a simple distribution
where the exact conditional independence can be represented by a tree model. In the second test, we chose
a more complex distribution such that the tree model can provide a good (not exact) approximation to the
true distribution. We varied the number of training instances and at each run computed three estimates of the
joint distributions: the Naive Bayes estimate (using non-parametric marginals), the tree estimate, and the direct
non-parametric estimate. We then measured the KL divergence from the true distribution to each of the three
estimates for varying training set sizes. LetD(P ||Pe) denote the KL divergence from the true distribution,P ,
to an estimate of the distribution,Pe. Recall that the KL distance is defined as

D(P ||Pe) = Ep

(

log
P (X)

Pe(X)

)

. (12)

Given a large number of samples from the true distribution (which we can easily generate), then by the law of
large numbers we can estimate the KL divergence by the average log of the likelihood ratios. That is, givenn
samples (wheren is large) the KL divergence can be estimated as

D(P ||Pe) =
1

n

n
∑

i=1

log
P (xi)

Pe(xi)
. (13)
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Figure 3: Convergence plots of various density estimates ofa 3-dimensional (left) and 10-dimensional (right)
Gaussian.

The plots of KL divergence versus number of samples for both experiments are shown in Figures 3(a) and 3(b).
We analyze these plots in more detail in the following subsections.

5.1 Experiment 1: Simple Case

We generated samples from a 3-dimensional Gaussian whose exact conditional independence relations are
shown in Figure 2(b). The mean of the Gaussian was placed at the origin. Recall that zeros in the inverse
covariance matrix correspond to missing edges in a graphical model and thus control the conditional indepen-
dence relations among the random variables [15, 4]. Thus, tomodel the conditional independence relationships
in Figure 2(b), entries(1, 3) and(3, 1) of the inverse covariance matrix were set to zero and the other entries
were chosen arbitrarily such that the covariance matrix remains positive definite.

Figure 3(a) shows the KL divergence of the true distributionto the three estimates. The following points
summarize our analysis of the graph.

• As expected the Naive model converges to a distribution thatis far away from the true distribution.
This is because dependencies exist in the true distributionwhich are not modeled by the Naive model.

• Due to statistical consistency of non-parametric estimates, the direct estimate of the joint will con-
verge to the true distribution (i.e. KL = 0). Since our tree distribution models the exact conditional
independence relations, it will converge faster than the direct estimate of the joint (as shown in the
plot) because we are estimating lower dimensional marginals.

• The KL divergence of the tree distribution is always smallerthan the Naive model, supporting our
claim that using a tree model will always perform better thana Naive Bayes model. This result can
be extended to parametric models. If the assumed parametricform is not consistent with the true
distribution, then in the limit the estimated parametric distribution will converge to a distribution that
is far away (i.e. larger KL divergence) from the true distribution.

Given that the joint distribution is only one dimension greater than the two-node marginals, we would not
expect a significantly faster convergence rate for the tree distribution. In the next experiment, in which the
joint distribution is in10 dimensions, the advantages of using the tree distribution will become even more more
apparent.

5.2 Experiment 2: Complex Case

For this case we generated samples from a 10-dimensional Gaussian, whose approximate conditional indepen-
dence relationships are shown in Figure 2(c). The followingpoints summarize our analysis.

• With a small number of training instances the Naive model hada closer approximation to the true
distribution than the direct joint estimate. This is because density estimates in high dimensions with
few points usually leads to inaccurate estimates.



(P) Category Name # of images (Z) Category Name # of images
Pennate diatoms 124 Calanus finmarchicus 132
Ciliates 179 ConchoeciaOstracods 100
Non-cell 113 Euphausiids 131
Mesodinium 71 Pteropods 142
Skeletonema 169 Larvaceans 133
Thallasiosira 86 Small Copepods 433
Pseudo-nitzschia 61 Unidentified Cladocerans 108

Siphonophores 202

Table 1: Taxonomic categories for the 7-class Phytoplankton data set (columns 1 and 2) and the 8-class Zoo-
plankton data set (columns 3 and 4).

• Again, the tree distribution converges rapidly to the best approximation of the true distribution. The
KL divergence remains approximately constant after1000 sample points, while the direct estimate of
the joint was not as accurate with5000 sample points.

• Again, the tree estimate was always better than the Naive estimate and the Naive estimate converged
to a distribution that is far away from the true one.

These plots highlight the main advantages of non-parametric tree-structured distributions. In the following
section we compare the performance of the proposed tree-model versus other parametric and non-parametric
estimates on a real-world plankton classification data set.We also discuss the bias/variance trade off we incur
by moving from the Naive Bayes model to this tree-structureddistribution.

6 Plankton Classification

We are provided with a training set of images and their corresponding class labels and the goal is given a
new unseen image to assign a class label to that image. The assumption is that each image contains only one
plankton organism.

We tested five models, a maximum likelihood (ML) Gaussian estimate of the full joint distribution (Gaussian -
Joint), a Naive Bayes model with ML Gaussian estimates for the marginals (Gaussian - Naive), a Naive Bayes
model with non-parametric marginals (NPD - Naive), a directnon-parametric estimate of the joint distribution
(NPD - Joint) and the tree estimate with non-parametric marginals (NPD - Tree).

6.1 Data Sets and Features

We tested all five models on two different data sets (Table 1).The first one is composed of 7 phytoplankton
categories [5] and the second is composed of 8 zooplankton categories [16]. We have found that a simple global
bimodal segmentation is usually effective for separating the plankton from the background, which tends to be
significantly darker than the object. We use expectation maximization (EM) to fit a mixture of two Gaussians
to the histogram of gray values for a given image [8]. The Bayesian decision boundary defines the cut point
between foreground and background. After that, morphological hole filling [21] is used to capture the stray
dark pixels inside the object.

We computed the following 20 features for the phytoplanktondata set:

• Simple Shape:The 8 features in this category include, Area, Perimeter, Compactness, Eigenratio,
Eccentricity, Standard deviation of area across connectedcomponents, Convexity, and Rectangularity.

• Moments of Intensity Histogram:The 5 features here include, the mean, std, skewness, and kurtosis
of the histogram of grayscale values and the entropy of the normalized histogram.

• Moment Invariants:These 7 features are basically the first seven moment invariants as proposed by
Hu (actually they are the log of the moments). The moments arecomputed over the binary image so
they are shape descriptors.

For the zooplankton data set we computed the Shape Index texture features [18]. A function of the image called
the shape index is computed:S(p, σ) = arctan[κ+µ

κ−µ
](p, σ), whereκ is the isophote curvature of the intensity

surface, andµ is the flowline curvature. The curvatures are computed via combinations of image derivatives,



Figure 4: Sample phytoplankton images

Figure 5: Sample zooplankton images

which are computed using the Gaussian derivative filters. Wecalculate the shape index at every pixel in the
image at a range of scales, and aggregate the values into a histogram by quantizing the shape index. Before
we do this, however, we ignore areas of low curvature by excluding points where the isophote (flowline) is
below the mean isophote (flowline). Currently histograms are calculated withσ = {

√
2, 2, 2

√
2} and 40 bins,

yielding 120 features.

6.2 Experimental Results

We performed 10-fold stratified cross validation to test each of the five models. For each data set we used the
exact same folds for all of the models we tested on. The results are summarized in Table 2. Our analysis of the
results are summarized in the following points.

• The tree-structured non-parametric estimate performed onaverage better than the other four models
it was tested on. In the case of the zooplankton data set it performed significantly better (11% better
than the next best result). Part of the increased performance on the zooplankton data set is due to the
fact that it contains more images per class.

• When comparing all the non-parametric models, the accuracyand standard deviation numbers re-
ported agree with our intuition regarding the bias/variance trade-off. The joint model (NPD-Joint) has
the highest variance out of all three non-parametric models. Also, the naive model (NPD - Naive) has
the lowest variance. Thus, the tree-based model provide a much lower bias estimate, at the cost of
a small increase in variance from the naive model. For, example in the case of the zooplankton data
set, the accuracy of the tree-based estimate was11% higher than the naive model, while its standard
deviation only increased by0.35%.

Overall, these results support our claim that there is a place for such non-parametric models in the vision
community and that one can obtain a much better estimate of the underlying distribution by using a tree-
structure.

Method Accuracy STD Accuracy STD
Gaussian - Joint 69.13% 6.81% 30.33% 2.60%
Gaussian - Naive 56.46% 5.87% 30.40% 2.59%
NPD - Joint 49.81% 7.67% 32.23% 9.20%
NPD - Naive 66.87% 6.20% 32.73% 2.31%
NPD - Tree 70.26% 6.37% 44.42% 2.67%

Table 2: Results on the two plankton data sets. The second andthird columns are the results pertaining to the
7-class phytoplankon data set, while the last two columns are the results pertaining to the 8-class zooplankton
data set.



7 Conclusions

In conclusion, we proposed a simple MAP classification procedure that models part of the dependencies be-
tween the features. We argued that such a model overcomes themain issue with non-parametric estimation
regarding having enough samples. We analyzed the performance of this model under synthetic distributions
and real-world data sets and in all of the cases we tested on, the results came out to favor the model that we
proposed. We hope that these results will influence the choice of modelers in the future to consider using such
powerful non-parametric models.
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