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Abstract

Our world is populated with visual information that a sighted person makes use of daily. Unfor-
tunately, the visually impaired are deprived from such information, which limits their mobility in
unconstrained environments. To help alleviate this we are developing a wearable system that is
capable of detecting and recognizing signs in natural scenes. The system is composed of two main
components, sign detection and recognition. The sign detector, uses a conditional maximum entropy
model to find regions in an image that correspond to a sign. The sign recognizer matches the hy-
pothesized sign regions with sign images in a database. The system decides if the most likely sign is
correct or if the hypothesized sign region does not belong to a sign in the database. Our data sets
encompass a wide range of variability including changes in lighting, orientation and viewing angle.
In this paper, we present an overview of the system and the performance of its two main components,
while paying particular attention to the recognition phase. Tested on 3,975 sign images from two
different data sets, the recognition phase achieves 99.5% with 35 distinct signs and 92.8% with 65
distinct signs.

1 Introduction

The development of an effective visual information system will significantly improve the degree to
which the visually impaired can interact with their environment. It has been argued that a visually
impaired individual seeks the same sort of cognitive information that a sighted person does [5]. For
example, when a sighted person arrives at a new airport or city they navigate from signs and maps.
The visually impaired would also benefit from the information provided by signs. Signs (textual
or otherwise) can be seen marking buildings, streets, entrances, floors and myriad other places. In
this research, a “sign” or “sign class” is defined as any physical sign, including traffic, government,
public, and commercial. This wide variability of signs adds to the complexity of the problem.

The wearable system will be composed of four modules (Figure 1). The first module is a head-
mounted camera used to capture an image at the users request. The second module is a sign detector,
which takes in the image from the camera and finds regions that correspond to a sign. The third
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Figure 1: System Layout: An overview of the four modules (solid line) in our system.

module is a sign recognizer which classifies each image region into one of the signs in its database.
Finally, the fourth module, a speech synthesizer, outputs information about the signs found in the
image.

Techniques for recognizing signs have recently gained attention from several researchers. However,
the main focus in previous work has been recognition and identification of standard traffic signs,
using color thresholding as the main method for detection. Sekanina and Torreson [16] used a
color-based filtering and template matching scheme to locate and read Norwegian speed limit signs.
Liu and Ran [9] used color thresholding to segment images and recognize Stop signs using a neural
network. Escalera et al. [4] detected signs using shape analysis and color thresholding and also using
a neural network for classification. Several techniques for text detection have been developed [7, 8,
19]. More recently Chen and Yuille [2] developed a visual aid system for the blind that is capable of
reading text off of various signs.

Unlike most previous work, our system is not limited to recognizing a specific class of signs, such
as text or traffic. In this application a “sign” is simply any physical object that displays information
that may be helpful for the blind. This system is faced with several challenges, that mainly arise
from the large variability in the environment. This variability may be caused by, the wide range of
lighting conditions, different viewing angles, occlusion and clutter, and the broad variation in text,
symbolic structure, color and shapes that signs can possess.

The recognition phase is faced with yet another challenging problem. Given that the detector is
trained on specific texture features, it produces hypothesized sign regions that may not contain signs
or may contain signs that are not in our database. It is the responsibility of the recognizer to ensure
that a decision is only made for a specific image region if it contains a sign in the database. False
positives come at a high cost for a visually impaired person using this system.

2 Data Sets

For our experiments, we used three different data sets. Two of the data sets where compiled for
testing the recognition phase and the third data set was compiled to test the detection phase. The
images of signs were taken using a still digital camera (Nikon Coolpix 995) with the automatic
white balance on. Manual +/- exposure adjustment along with spot metering was used to control
the amount of light projected onto the camera sensor. The following subsections provide more
information regarding each of the data sets.

2.1 Detection Data

This data set contains 309 images of natural scenes from a town center. Two sample images are
shown in Figure 2. The purpose of this data set is to test the performance of the sign detector. The
signs in the images were manually segmented from the background to provide training and testing
images for the detector. The ratio of background to sign patches is more than 13:1 in this data set.



Figure 2: Two sample images in the detection data set.

Figure 3: An example of the different lighting conditions captured by the five different images in
the 35 sign data set.

2.2 Recognition I: Lighting and Orientation

The purpose of this data set is to test the robustness of the sign recognizer with respect to various
illumination changes and in plane rotations. Frontal images of signs were taken at five different times
of the day, from sunrise to sunset. See Figure 3 for an example of the different lighting conditions
captured in the five images. The images were manually segmented to remove the background. We
then rotated each image from � ����� to

�����
at � ��� intervals, resulting in 95 synthetic images per sign.

We synthesized views for 35 different signs resulting in a database of 3325 images.

2.3 Recognition II: Viewing Angle

We compiled a second recognition data set to test the robustness of the recognizer with respect
to different viewing angles. This second database contains ten images of 65 different signs under
various viewing angles. Figure 5 provides sample viewing angles of nine signs in the 65-class
data set. As before, all the images were manually segmented to remove any background. The
different viewing angles where taken by moving the camera around the sign (i.e. the data was not
synthesized).

3 Detection Phase

Sign detection is an extremely challenging problem. In this application we aim to detect signs
containing a broad set of fonts and color. Our overall approach [18] operates on the assumption that
signs belong to a generic class of textures, and we seek to discriminate this class from the many
others present in natural images.

When an image is provided to the detector, it is first divided into square patches that are the atomic
units for a binary classification decision on whether the patch contains a sign or not (Figure 6).
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Figure 4: An overview the sign recognition phase.

We employ a wide range of features that are based on multiscale, oriented band-pass-filters, and
non-linear grating cells. These features have been shown to be effective at detecting signs in uncon-
strained outdoor images [18]. Once features are calculated at each patch, we classify them as being
either sign or background using a conditional random field classifier. After training, classification
involves checking whether the probability that an image patch is sign is above a threshold. We then
create hypothesized sign regions in the image by running a connected components algorithm on the
patches that were classified as sign. Figure 6 shows the results of the sign detector on the images in
Figure 2.

Images in the detection data set were divided into 713 overlapping patches ( ��������� pixels). For
evaluation, we performed ten fold cross validation. Using a MAP threshold ��� �
	��

we obtained
 � 	 ����� sign detection rate with average sign coverage of

 ��������� . The majority of signs that were

not detected had poor image quality. (See [18] for more analysis of the detection phase.)

4 Recognition Phase

The recognition phase is composed of two classifiers. The first classifier computes a match score
between the query sign region and each sign class in the database. The second classifier uses that
match scores to decide whether the class with the highest match score is the correct one or whether
the query sign region does not belong to any of the classes in the database. Figure 4 shows an
overview of the recognition system.

4.1 Global and Local Image Features

Image features can be roughly grouped into two categories, local or global. Global features, such as
texture descriptors, are computed over the entire image and result in one feature vector per image.
On the other hand, local features are computed at multiple points in the image and describe image
patches around these points. The result is a set of feature vectors for each image. All the feature
vectors have the same dimensionality, but each image produces a different number of features which
is dependent on the interest point detector used and image content.

Global features provide a more compact representation of an image which makes it straightforward
to use them with a standard classification algorithm (e.g. support vector machines). However, local
features possess several qualities that make them more suitable for our application. Local features
are computed at multiple interest points in an image, and thus are more robust to clutter and occlusion



Figure 5: Eight sample images that illustrate the different signs and views in the 65 sign data set.

and do not require a segmentation. Given the imperfect nature of the sign detector in its current state,
we must account for errors in the outline of the sign. Also, local features have proved to be very
successful in numerous object recognition applications [10, 17].

Local feature extraction consists of two components, the interest point detector, and the feature de-
scriptor. The interest point detector finds specific image structures that are considered important.
Examples of such structures include corners, which are points where the intensity surface changes
in two directions; and blobs, which are patches of relatively constant intensity, distinct from the
background. Typically, interest points are computed at multiple scales, and are designed to be stable
under image transformations [14]. The feature descriptor produces a compact and robust representa-
tion of the image patch around the interest point. Although there are several criteria that can be used
to compare detectors [14], such as repeatability and information content, the choice of a specific de-
tector is ultimately dependent on the objects of interest. One is not restricted to a single interest point
detector, but may include feature vectors from multiple detectors into the classification scheme [3].

Many interest point detectors [14] and feature descriptors [11] exist in the literature. While the detec-
tors and descriptors are often designed together, the solutions to these problems are independent [11].
Recently, several feature descriptors including Scale Invariant Feature Transform (SIFT) [10], gra-
dient location and orientation histogram (extended SIFT descriptor) [11], shape context [1], and
steerable filters [6], were evaluated [11]. Results showed that SIFT and GLOH obtained the high-
est matching accuracy. Experiments also showed that accuracy rankings for the descriptors was
relatively insensitive to the interest point detector used.

4.2 Scale Invariant Feature Transform

Due to its high accuracy in other domains, we decided to use SIFT [10] local features for the recog-
nition system. SIFT uses a Difference of Gaussians (DoG) interest point detector and a histogram
of gradient orientations as the feature descriptor. The SIFT algorithm is composed of four main
stages: (1) scale-space peak detection; (2) keypoint localization; (3) orientation assignment; (4)
keypoint descriptor. In the first stage, potential interest points are found by searching across im-
age location and scale. This is implemented efficiently by finding local peaks in a series of DoG
functions. The second stage, fits a model to each candidate point to determine location and scale,
and discards any points that are found unstable. The third stage finds the dominant orientation for
each keypoint based on its local image patch. All future operations are performed on image data
that has been transformed relative to the assigned orientation, location and scale to provide invari-
ance to these transformations. The final stage computes 8 bin histograms of gradient orientations



at 16 patches around the interest point resulting in a 128 dimensional feature vector. The vectors
are then normalized and any vectors with small magnitude are discarded. SIFT has been shown to
be very effective in numerous object recognition problems [10, 11, 3, 12]. Also, the features are
computed over gray scale images which increases their robustness to varying illumination changes,
a very useful property for an outdoor sign recognition system.

4.3 Image Similarity Measure

One technique for classification with local features is to find point correspondences between two
images. A feature ��� in image A corresponds or matches to a feature ��� in image B if the nearest
neighbor of ��� in image B is ��� and the Euclidean distance between them falls below a threshold.
The Euclidean distance is usually used with histogram-based descriptors, such as SIFT, while other
features such as Differential features are compared using the Mahalanobis distance, because the
range of values of their components differ by orders of magnitude.

For our recognition system, we will use the number of point correspondences between two images
as our similarity measure. There are two main advantages with this measure. First, SIFT feature
matching has been shown to be very robust with respect to image deformation [11]. Second, nearest
neighbor search can be implemented efficiently using a k-d-b tree [13] which allows for fast classi-
fication. Thus, we can define an image similarity measure that is based on the number of matches
between the images. Since the number of matches between image ��� and �	� is different from the
number of matches between image �
� and �
� , we define our bi-directional image similarity measure
as: �
� �
�����	�����
�

� � � ��� � ��� �
� � � ��� � �

� �
where �

��� ����� is the number of matches between A and B.

Sign images that belong to the same class will have similar local features since each class contains
the same sign under different viewing conditions. We will use that property to increase our classi-
fication accuracy by grouping all the features that belong to the same class into one bag. Thus, we
will end up with one bag of keypoints for each class. Now we can match each test image with a bag
and produce a match score for each class. We define a new similarity measure between an image �
and a class

�
that contains � images

���
as:� � ��� � � � !" �$# �

�
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4.4 Rejecting Most Likely Class

Given the match score for each class, we train a Support Vector Machine (SVM) meta-classifier to
decide if the class with the highest match score is the correct class or if the test image does not
belong to any of the signs in the database. We have observed that when a test image does not belong
to any of the signs in the database, the match scores are relatively low and have approximately the
same value. Thus, for the SVM classifier we compute features from the match scores that capture
that information.

First, we sort the match scores from all the classes in descending order, then we subtract adjacent
match scores to get the difference between the scores of the first and second class, the second and
third class, etc. However, since the difference between lower ranked classes are insignificant we
limit our differences to the top 11 classes resulting in 10 features. We also use the highest match
score as another feature along with the probability of that class. We obtain a posterior probability
distribution over class labels by simply normalizing the match scores. Thus, the probability that
image � belongs to class & � is defined as

�
� & ��' �(��� � � �)�*& � �+-,. # � �

� ����& . � �



Figure 6: The detector results on the images in Figure 2.

where � is the number of classes. We also compute the entropy of the probability distribution over
class labels. Entropy is an information-theoretic quantity that measures the uncertainty in a random
variable. The entropy �

��� � of a random variable

�
with a probability mass function �

� � � is defined
by

�
��� ��� �

"
���	� �

� � ��
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Using these 13 features we train an SVM classifier to decided if the class with the highest score is
the correct one.

The approach of using the output of a classifier for input to another meta-classifier is similar to an
ensemble algorithm known as “stacking.” Stacking [15] improves classification accuracy by com-
bining the outputs of multiple component classifiers. It concatenates the probability distributions
over class labels produced by each component classifier and uses that as input to a meta-classifier.
Stacking can also be used with just one component classifier. In the case of stacking both the com-
ponent classifiers and the meta-classifier are solving the same � -class problem. However, in our
case we use the meta-classifier to solve a different problem than the component classifier.

We adapt the idea of stacking by using the probability distribution as the sole features for the meta-
classifier. In experiment 3 of the following section we compare our choice of features with that of
stacking.

5 Experiments and Results

We performed 3 different experiments to test the various aspects of the recognition phase. The
first experiment tested the recognizer on the 35 sign database. The second tested it on the 65 sign
database. Finally, the third experiment tested the recognizer on the 65 class database while omitting
half of the sign classes from the training data to evaluate how well it performs on ruling out a sign
image that does not belong to any of the signs in the training set. Table 1 summarizes the results of
the recognizer for the different experiments. The following subsections describe the experimental
set up in more detail.

5.1 Recognition: 35-Class Data Set

This data set contains 3325 sign images from 35 different signs. We performed a leave-one-out
experiment using 3325 test images, while using only 175 training instances. Although each sign



Figure 7: An example where two different signs were grouped together by the detector.

Figure 8: The image on the left is a sample sign that was misclassified in the 35 sign experiment. It
was classified as a member of the sign on the right.

contains 95 instances, there are only 5 unique ones since the remaining 90 correspond to the synthetic
rotations. For our training set we only kept the five unique images from each sign. We compared
each test image to 174 training images leaving out the one that corresponds to the rotated version of
the test image.

The results of both the image matching and feature bagging were identical and extremely high,
achieving a 99.5% accuracy. The main reason that the feature bagging did not improve accuracy in
this case was because the small number of test instances that were classified incorrectly using image
matching were extremely confused that summing up the match scores from all the signs within the
class, did not alleviate that confusion. Most of the confused images were those that had very poor
image quality. Figure 8 shows an example of a sign that was classified incorrectly. These results
emphasize the robustness of SIFT features with respect to various illumination changes.

5.2 Recognition: 65-Class Data Set

Following the performance of the recognizer on the previous data set, we compiled a second more
challenging data set that included a much larger number of sign classes and more variability in
the viewing angles. We performed five fold cross validation on the 650 images. Image matching
performed 90.4% accuracy, and when we grouped the features by class, the accuracy increased to
92.8%. This 25% reduction in error shows the advantage of the feature bagging method.



Experiment Mean Accuracy STD (+/-)
35 sign: Image Matching 99.5% N/A
35 sign: Feature Grouping 99.5% N/A
65 sign: Image Matching 90.4% 2.75%
65 sign: Feature Grouping 92.8% 2.73%
65 sign: Stacking 82.25% 0.19%
65 sign: Our-meta 90.8% 0.26%

Table 1: Summary of results for the sign recognizer.

5.3 Recognition: 65-Class Data Set with Missing Training Classes

This experiment was intended to test the ability of the recognizer in deciding if the highest matched
class is the correct one. We performed ten fold cross validation. On each fold we removed the images
from a randomly selected group of 35 signs from the testing set. During training, we obtained the
match scores of the classes for a specific training instance. We then computed features from the
match scores and then attached a class label of 1 if the training instance belonged to a class in the
new test set, 0 otherwise. We then train the SVM classifier and use the trained model to classify the
test data.

Using our 13 features, the meta-classifier achieved 90.8% accuracy, while using the probability
distribution we only acheived 82.25%. These results strengthen our choice of features and show that
they contain more useful information than the probability distribution.

This is mainly because the probability distribution can be misleading with respect to the match
scores. For example, assume that we have two classes in our database, and we are presented with an
image that truly does not belong to either. Assume also that when we match the image with the two
classes we get 1 and 0 match scores respectively. Although it is obvious that the match scores are too
low for the image to belong to any of the classes, when we normalize, we obtain a 100% probability
that the first class is the correct class, which is obviously incorrect. Our features caputure most of
the relevant information from the match scores which is important for the classification.

6 Conclusion and Future Work

We have presented algorithms for sign detection and recognition for a wearable system to be used by
the blind. The sign detector uses a wide array of features with a conditional random field classifier
to find sign regions in the image. The sign recognizer matches each of the hypothesized sign regions
with the sign classes in a database and then decides if the highest matched class is the correct one or
if the region does not belong to any of the sign classes.

Each of the components perform well on their respective tasks. We are currently in the process of
integrating the two components to obtain a complete working system. Figure 9 shows initial sample
results of the two components working together. We are also working on improving the accuracy of
the individual components. We plan to improve the sign detection rate by using Markov fields with
ICM for fast approximate inference. Also the sign recognizer has to be extended to be able to deal
with cases were a hypothesized sign region contains more than one sign in the database (Figure 7).
Future work also includes adding the final two modules to the system, the head-mounted camera
and the voice synthesizer.
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Figure 9: A sample result after integrating the detector and recognizer. The first row contains the
initial image and the result of the detector. The second row shows sample results of three connected
components and their respective segmentation. The third row shows the result of matching each
connected component with the sign classes in the 65 sign data set. The third sign was classified
incorrectly because the image region does not belong to any of the signs in the database. However,
our trained meta-classifier successfully classified the image region as a negative instance, meaning
that it does not belong to any of the classes in the database.


