Improved Generative Models for Continuous Image
Features through Tree-structured Non-parametric
Distributions

Marwan A. Mattar Erik G. Learned-Miller

Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003

{mmattar, elm@cs.umass.edu

Abstract

Density estimation arises in a wide range of vision problemd methods which can deal
with high dimensional image features are of great impogané/hile in principle a non-
parametric distribution can be estimated for the full featdistribution using Parzen win-
dows technique, the amount of data to make these estimatesase is usually either
unattainable or unmanageable. Consequently, most msdelsort to parametric models
such as mixtures of Gaussians (or other more complicateahpric forms) or make in-
dependence assumptions about the features. Such asswsnmidd be detrimental to the
performance of vision systems since realistically, imaggdres have neither a simple para-
metric form, nor are they independent.

In this paper, we revive non-parametric models for imageufeadistributions by finding
the best tree-structured graphical model (using the Chwalgorithm) for our data, and
estimating non-parametric distributions over the one- avanode marginals necessary to
define the graph. This procedure has the appealing propetyifithe tree-structured model
represents the true conditional independence relationthéfeatures, then our estimated
joint distribution converges rapidly to the true distrilout of the data. Even when this is
not true, it converges to the best possible tree-structomedee! for the original distribution.
We illustrate the effectiveness of this technique on sitedalata and a real-world plankton
classification problem.

1 Introduction

Modeling the joint distributions ofontinuousmage features is a difficult task since in most applicatiomy

a relatively small number of samples are available for a ddiighensional distribution. In principle, if we
had an infinite number of samples, we could estimate the tim distribution over all the features using
a kernel density estimation (KDE) technique such as Parzadomws [20, 9]. In a standard classification
setting, we could use the estimated class conditional ties$o build a classifier that attains the Bayes error
rate. However, in reality, the required number of samplesitiser unattainable or unmanageable. This has
led many to conclude that non-parametric techniques argiabke and are impractical for high-dimensional
distributions. Consequently, most modelers resort to ngakimplifying assumptions about their distributions
such as:

e Restricting their form to simple parametric distributiolghile such assumptions reduce the variance
of density estimates, they do so at the cost of higher biasgdiypically, true distributions (at least
for continuous image features) are not well fit by these stnpalrametric forms.

e Assuming the features are independent. Now the joint digiin factors into the product of one-
dimensional distributions which can be estimated acclyratsing KDE. This may result in good
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Figure 1: An example of a learned tree model. This graph shiogvkearned dependencies between 20 features
for one of the classes in the phytoplankton data set. Se@8dxct for a brief description of the features. The
edges on the graph connect the features that have the maximpemdencies or greatest mutual information.
The connections in the graph match intuitions, for the mast, @bout which features should have the highest
mutual information, such as the edge between EigenRaticEaodntricity and the edge between Area and
Perimeter. Note furthermore that this is a graph @a@ntinuousnot discrete, random variables.

estimates of marginal feature distributions, but a poor ehéar the joint feature distribution, since
the assumption of total feature independence is seldomayaroximately realized.

e Discretizing the feature space. This procedure is probiiemaecause small changes in the bin size
can have a profound effect on the observed probability masgibn. A further difficulty is that if the
bin width is chosen small enough to capture local structilmen, even in two dimensions, the total
number of bins becomes so large that random error effectkalgto become dominant [20].

In this paper, we revive non-parametric models for imagéufeadistributions by finding the optimal tree-
structured graph (see Figure 1) using the Chow-Liu algorit8], and estimating non-parametric distributions
over the one- and two-node marginals necessary to definedpé.g

More specifically, we propose a simple procedure for effeckilAP classification using tree-structured non-
parametric distributions:

1. Obtain a training set of labeled data for each class.

2. Forthe points in each class, learn a tree structured graplspans the strongest dependencies among
the features.

3. Estimate a non-parametric, but structured, probakikgsity for each class based upon the learned
tree-structured graph for that class.

4. Evaluate the likelihood of each class by evaluating itbpbility density under the estimated distri-
bution.

There are two very appealing properties of this model. Fastthe amount of training data grows, our non-
parametric estimate will become closer and closer (ancthatgly converge) to thbest possible approxima-
tion (in the sense of Kullback-Leibler [7] divergence) of theetmistribution over all possible tree-structured
distributions! This includes not only parametrically structured treeriistions, but all non-parametric tree-
structured distributions as well. If the tree-structureapdy represents the true conditional independence rela-
tions for the features, then our estimated joint distrilmuttonverges to the true distribution of the data. Second,
by restricting our attention to tree-structured distribng, each distribution can be expressed as a simple func-
tion of the one- and two-node joint distributions of the teas. By limiting the factors of the joint distribution

to two dimensions, we ensure that our non-parametric estsra these factors converge rapidly, and can be
reasonably estimated with practically sized data sets.

IThis is a simple consequence of the optimality of the Chow-Liu algorithm andtdtistical consistency of non-
parametric density estimates.



In the following section, we describe previous versionshas tnodel in the machine learning and geosciences
communities, and explain the main differences with the oa@resent here. Itis important to keep in mind that
the main purpose of this paper is not to describe a newly dpeel model, but to thoroughly analyze a variant
of an existing tool to reveal its wide applicability for thésion community. From our results on plankton
classification (as discussed in Section 6) we conclude #tamhating the joint distribution by a tree-structured
graph produces better estimates than using parametrithdigins. We believe that these models could be
utilized more often in the field, and we provide experimergallts on simulated distributions and a real-world
plankton classification problem. We hope that the outconfiekese experiments convince the reader of the
powerful properties that these models possess and thedrnaithe of potential applications.

2 Related Work and Our Contributions

In their original paper, Chow and Liu [6] showed that the dniapl model represented by the maximum span-
ning tree of the fully connected graph whose nodes are thadorarvariables (or features) has the closest
Kullback-Leibler (KL) divergence to the true joint disttition than any other tree-structured distribution. This
result requires that the edge weight between any two nodes|jli& to the mutual information between the

features represented by those nodes. Although their prasffar discrete random variables, their argument
scales to continuous random variables (see [2] for a formadfp They used their algorithm to estimate

class-conditional densities in a Bayesian classifier usethssify gray-scale images of digits.

More than 20 years later, this procedure for constructinggeBian classifier was named Bayesian Multi-nets
by the the machine learning community [10, 11]. Friedreaal.[10] also introduced the Tree Augmented
Network classifier, which uses the data points from all tlessés to learn one tree structure for all the classes
(as opposed to a potentially different graph for each claSg)ce then, a large nhumber of structure learning
algorithms have been proposed in the literature [12] andemecently researchers have been interested in
comparing and contrasting generative and discriminatigéhods to structure learning (see [17] for a review).
However, most of the previous work [10, 11, 12, 17, 1, 14] vatfew exceptions [2, 13]) assume a discrete
feature space.

Perhaps the only notable exception is Bach and Jordan [2¢h Bad Jordan [2] proposed a generalization

of independent components analysis (ICA) were insteadakity for a transform that makes the data com-

ponents independent they look for a transform that makeslalee components well fit by a tree-structured

distribution. With respect to density estimation, theipexments on simulated data showed that transforming
the distribution to better fit a graph structure and themesiing the one- and two-node marginals of their graph
non-parametrically produced the best estimates.

Datcuet al.[13] is perhaps the first and only other work that applies thewzLiu algorithm on continuous
image data while using kernel density estimation to esgrtfa¢ one- and two-node marginals. However, their
paper overlooks some of the issues involved with KDE suchaasiWidth selection and the consistency of the
marginals (see Section 4.2).

3 Background

In this section we review some background material reggrdaive Bayes and tree-structured distributions
before describing details of our method. We begin with alldbeata set consisting ofreal valued feature
vectors in09 and their corresponding class labelécy, ¢y, ...,cm} represents the set of class labels for an
m-class problem.

3.1 Naive Bayes

Naive Bayes assumes that all of the features are condiljandependent given the class.
d
P(x|c) = [ P(xjlc)- ()
=1

The graphical representation of the Naive Bayes model (f@rctass-conditional distribution) would represent
the features as nodes without any edges. This assumptidiuges an estimate of the distribution that has
lower variance (but higher bias) than estimating the joistribution directly. We discuss this bias/variance
trade-off in more detail in Section 6. Since image featuresarely independent, the estimated density under
the Naive model will tend to be an inaccurate estimate ofrilne ainderlying distribution.
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Figure 2: Examples of tree-structured graphs. a) An exawipde5-node tree-structured graph. b) A graphi-
cal model representing the exact conditional independeglaéons in our synthetic 3-dimensional Gaussian
distribution (see text). c) A graphical model representimgapproximation to the conditional independence
relations in our synthetic 10-dimensional Gaussian distidn (see text).

3.2 Tree-structured Distributions

A tree-structured distribution is one in which dependen@ee represented by a tree-structured graph (see
Figure 2(a)). To write the joint probability function for eee-structured model, any vertex can be declared
as the root and a directed tree can be formed by assigningstoopoint away from the root. Thus, we can
define the joint probability as the product of conditionadlpabilities, where each term becomes a conditional
distribution of a node given its parent in the directed tfea. example, the joint distribution represented by the
tree graph in Figure 2(a) can be written

P(X) = P(Xa)P(Xa|Xa)P(Xc|Xa)P(Xp|Xc)P(Xe Xc) @)
_ P(Xa, X8)P(Xs, Xc)P(Xc, Xp)P(Xc, Xe) 3)
P(Xe)P(Xc)P(Xc) '
The general form for the joint distribution on a graph is [19]
Mgy POXLX)
" Ao @

where the sefi, j} denotes the set of all the edges in the graph { edges)k simply iterates through all the
marginals andly is the degree of node

A tree model for a set of mutually independent features isvatgnt to a Naive Bayes model (through the
definition of independence). For example, if all of the nomeBigure 2(a) were mutually independent, then
the tree-structured distributioR(X) becomes

_ P(Xa)P(Xg)P(Xg)P(Xc)P(Xc)P(Xp)P(Xc)P(Xe)
P(X) = Q)
P(Xg)P(Xc)P(Xc)

= P(Xa)P(X8)P(Xc)P(Xp)P(Xe), (6)
a Naive Bayes model. This means that, at worst, if we modedpgaddent features, the tree estimate of the
joint distribution will be as good as the Naive Bayes moddilisimplies that, modeling dependencies between
features using a tree-structured distribution will neverf@grm worse than a Naive Bayes model. Unless of
course we have an extremely small sample size that the afemarginals for the Naive Bayes model are
estimated much better than the two-node marginals in tleedistribution.

It is important that the estimates for the one- and two-nodegmals be consistent. By consistent we mean
that marginalizing the joint should give us the same diatiim as estimating the marginal directly from the
data. If the one- and two-node marginals are inconsistent the conditional distribution would not be a true
density. Inconsistency arises if we have poor estimatebefdint and marginal distributions which usually
occurs if not enough data is present. We discuss this in metaldn Section 4.2 and describe a method for
enforcing consistency.

4 Algorithm

We now overview our algorithm and discuss specific detailaier subsections. We perform the following
two steps for each class separately, where at each iteraéi@mly use the data points that belong to that class.



The first step computes the maximum spanning tree and thedestimates the necessary non-parametric
distributions that define the graph.

Step 1 - Maximum Spanning Tree: The first stage of the algorithm is to compute the maximum span
ning tree specific to the class. Before, we do that we need ngpuate the symmetric cost matrix between
all of the nodesi(e. the edge weights). As mentioned earlier, the edge weigletdefined as the mutual
information [7] between the features represented by thesiathus, entryi, j) of the cost matrixC is defined

as

Gij = 1% X)) =Cii, @
wherel (X;; X;) is the mutual information between featubgsandX;. Now given the cost matrix, we run one
of the standard maximum spanning tree algorithms to get ae$udf edges that characterize the undirected
acyclic model for this class.

Step 2 - Tree Density Estimate: The next step is to estimate the class conditional densitgngihe
optimal tree structure computed in the previous step As wesee from equation (4), we need to estimate
non-parametrically the 2-node marginals between the feattonnected by an edge and the 1-node marginals
for the nodes that have a degree of 2 or higher. At test timenwine are provided with a feature vector, we
compute the likelihood of its various components under ifferént joint and marginal density estimates and
then apply equation (4) accordingly to get the likelihoodhaf class given that data point.

4.1 Non-parametric Density Estimation

As mentioned earlier we need to estimate the distributiomfsamples non-parametrically. In this section we
briefly review KDE.

In a nutshell, KDE involves, placing a kernel at each sampliatpand then using the data to optimize the
parameters for the kernels. The probability density flc{PDF) is then defined as the normalized sum of all
the kernels. The most appealing property of non-paramestimates is statistical consistency. That is, as the
number of sample points increases, the estimated denditgegome closer and closer to the true underlying
distribution, eventually converging to the true distribnt Parametric and semi-parametric models do not
possess this property. For example, if we are assuming thamadal distribution is a Gaussian, an infinite
number of points will not converge the estimated Gaussiaimildiition to the true bimodal distribution.

When attempting to estimate a density non-parametricalty,rhain choices need to be made. The first is the
type of kernel that will be placed at each point. In all of tkeeriments in this paper we use a Gaussian kernel.
The second

e The first is the type of kernel that will be placed at each pwihich is problem-dependent. In all of
the experiments in this paper we use a Gaussian kernel.

e The second is how the kernel parameters (in the case of a i@auss the covariance matrix) will
be computed. Again, several choices exist, such as Parretows [20]. The approach enforces the
same circular kernel for all of the data points. Thus, therniy one parameter (i.e. ~ = al), which
is set such that the mean log likelihood of every point is mazéd using a leave-one-out scheme.

It is important to note that the statistical consistencyaf+parametric density estimation holds for any choice
of a kernel €.g.Gaussian, Rectangular, Epanechnikov), even if it is igetiito being circular. In the following
subsection we discuss the consistency of marginals anededeermethod for estimating the kernel parameters.

4.2 Consistency of Marginals

It is essential that the one- and two-node marginals that the tree distribution be consistent, otherwise the
conditional distributions would not be true densities. &ithat we enforce circular kerneise( diagonal co-
variance matrices) in our density estimates, consistentlyis case implies that the variance along a dimension
in a two-node marginal should be equal to the variance ofritsimode marginal. For example, consider the
model depicted in Figure 2(b). The joint distribution of thlifee features under this model is

P(Xa; X8)P(Xa, Xc)
: (8)
P(Xs)
Thus enforcing the consistency condition requires thawvtreance ofXg under both joints and the marginal

be approximately the same. Note that issues regarding $istencies only arise when we do not have enough
data points.

P(XA7XB7XC) =



To enforce consistency, we set the diagonal covariancexwditthe two-node marginals to the variances of the
component one-node marginals. Thus, the covariance nfatran arbitrary two-node margin&(X,Y) is

o2 0
ny:|: OX 0-)2/ s (9)

wherea? is the variance of the one-node margim{X) and of, is the variance of the one-node marginal
P(Y). This is justified by the fact that marginalizing a bivari@aussian with a covariance matrix of the above

form results in two univariate Gaussians (one with variamg¢@nd another with varianoeﬁ) which implies
consistency.

Now we need to optimize the variance parameters for the tree. ldeally, we should séheat parameters
such that the mean log likelihood of every point (under tiee @listribution) is maximized using a leave-one-
out scheme. However, for high-dimensional feature spadssiiethod becomes computationally expensive.
Alternatively, we maximize each of the variance parametetwidually using the Parzen windows technique
and then we introduce a single multiplicative constattt add another degree of flexibility to our model. This
constant allows us to change the variance values for all@btie-node marginals by a constant factor. We
optimizek such that the mean log-likelihood of the data points undemtiodel is maximized using a leave-
one-out scheme. This allows us to use the structure of tleetérénfluence the variances while avoiding a
complex optimization procedure.

4.3 Estimating Mutual Information

When computing the cost matrix, we need to compute the muté@imation between random variables. The
mutual information between two random variab¥eandY is defined as

1(X;Y) = h(X) +h(Y) — h(X.Y), (10)

whereh(X) andh(Y) are the differential entropy [7] of the marginal distrilarts anch(X,Y) is the differential
entropy of the random vectdiX,Y). Since we only have samples from a distributiae.(ts exact form is
unknown) we cannot solve for exact marginal and joint enémp One could resort to assuming a specific
parametric form or discretizing the data, but such prooegieither misrepresent the data or throw away a lot
of information. Thus, we use the resubstitution estimatendfopy [3], which does not make any assumptions
about the data. Under this estimate, the entropy (in nadidtribution giverk samples from that distribution

is

. 1k
hk = _E -Zlnfk(Xk)’ (11)

wherefy is a non-parametric density estimate of keample points.

5 Synthetic Data

In this section we support the claims that a tree model willagis better approximate the joint density than
the Naive Bayes model. We also test that the tree model cgpesdo the best possible estimate of the true
distribution much faster than estimating the joint disitibn directly.

We generated samples from a known multivariate distriloutla the first test, we chose a simple distribution
where the exact conditional independence can be represbyta tree model. In the second test, we chose
a more complex distribution such that the tree model canigeoa good (not exact) approximation to the
true distribution. We varied the number of training insiamand at each run computed three estimates of the
joint distributions: the Naive Bayes estimate (using nangmetric marginals), the tree estimate, and the direct
non-parametric estimate. We then measured the KL diveggiom the true distribution to each of the three
estimates for varying training set sizes. DEP||P:) denote the KL divergence from the true distributi®nto

an estimate of the distributioR.. Recall that the KL distance is defined as

(PP = &5 (10ap 3 ). (12)

Given a large number of samples from the true distributioni¢tv we can easily generate), then by the law of
large numbers we can estimate the KL divergence by the adoggof the likelihood ratios. That is, given
samples (whera s large) the KL divergence can be estimated as

(PR - 3 3 1005

Pe(Xi) (13)
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Figure 3: Convergence plots of various density estimates3®tlimensional (left) and 10-dimensional (right)
Gaussian.

The plots of KL divergence versus number of samples for bxpleements are shown in Figures 3(a) and 3(b).
We analyze these plots in more detail in the following sutises.

5.1 Experiment 1: Simple Case

We generated samples from a 3-dimensional Gaussian whest enditional independence relations are
shown in Figure 2(b). The mean of the Gaussian was placedeatrthin. Recall that zeros in the inverse
covariance matrix correspond to missing edges in a grajpmicdel and thus control the conditional indepen-
dence relations among the random variables [15, 4]. Thuspttel the conditional independence relationships
in Figure 2(b), entrie$1,3) and(3,1) of the inverse covariance matrix were set to zero and the ethigies
were chosen arbitrarily such that the covariance matrixaiesmpositive definite.

Figure 3(a) shows the KL divergence of the true distributiorthe three estimates. The following points
summarize our analysis of the graph.

e As expected the Naive model converges to a distributionithftr away from the true distribution.
This is because dependencies exist in the true distributiach are not modeled by the Naive model.

e Due to statistical consistency of non-parametric estigatee direct estimate of the joint will con-
verge to the true distributiori.€. KL = 0). Since our tree distribution models the exact coodil
independence relations, it will converge faster than thectliestimate of the joint (as shown in the
plot) because we are estimating lower dimensional marginal

e The KL divergence of the tree distribution is always smatllean the Naive model, supporting our
claim that using a tree model will always perform better thaNaive Bayes model. This result can
be extended to parametric models. If the assumed paranfietnicis not consistent with the true
distribution, then in the limit the estimated parametristdbution will converge to a distribution that
is far away {.e. larger KL divergence) from the true distribution.

Given that the joint distribution is only one dimension gezahan the two-node marginals, we would not
expect a significantly faster convergence rate for the tistiloltion. In the next experiment, in which the
joint distribution is in 10 dimensions, the advantages @figithe tree distribution will become even more more
apparent.

5.2 Experiment 2: Complex Case

For this case we generated samples from a 10-dimensionak@aywhose approximate conditional indepen-
dence relationships are shown in Figure 2(c). The follovgamts summarize our analysis.

e With a small number of training instances the Naive model &adbser approximation to the true
distribution than the direct joint estimate. This is be@adensity estimates in high dimensions with
few points usually leads to inaccurate estimates.



| (P) Category Nameg # of images]| (Z) Category Name | # of images|

Pennate diatoms 124 Calanus finmarchicus 132
Ciliates 179 ConchoeciaDstracods 100
Non-cell 113 Euphausiids 131
Mesodinium 71 Pteropods 142
Skeletonema 169 Larvaceans 133
Thallasiosira 86 Small Copepods 433
Pseudo-nitzschia 61 Unidentified Cladocerans 108

Siphonophores 202

Table 1: Taxonomic categories for the 7-class Phytoplanktta set (columns 1 and 2) and the 8-class Zoo-
plankton data set (columns 3 and 4).

e Again, the tree distribution converges rapidly to the bggtraximation of the true distribution. The
KL divergence remains approximately constant after 100@p$a points, while the direct estimate of
the joint was not as accurate with 5000 sample points.

e Again, the tree estimate was always better than the Naiua&st and the Naive estimate converged
to a distribution that is far away from the true one.

These plots highlight the main advantages of non-paramgte-structured distributions. In the following
section we compare the performance of the proposed treeimetsus other parametric and non-parametric
estimates on a real-world plankton classification dataWetalso discuss the bias/variance trade off we incur
by moving from the Naive Bayes model to this tree-structutistribution.

6 Plankton Classification

We are provided with a training set of images and their cpeding class labels and the goal is given a
new unseen image to assign a class label to that image. Thmpssn is that each image contains only one
plankton organism.

We tested five models, a maximum likelihood (ML) Gaussiaimese of the full joint distribution (Gaussian -
Joint), a Naive Bayes model with ML Gaussian estimates femntlarginals (Gaussian - Naive), a Naive Bayes
model with non-parametric marginals (NPD - Naive), a direm-parametric estimate of the joint distribution
(NPD - Joint) and the tree estimate with non-parametric matg (NPD - Tree).

6.1 Data Sets and Features

We tested all five models on two different data sets (TableThg first one is composed of 7 phytoplankton
categories [5] and the second is composed of 8 zooplanktega@es [16]. We have found that a simple global
bimodal segmentation is usually effective for separatirgglankton from the background, which tends to be
significantly darker than the object. We use expectationimization (EM) to fit a mixture of two Gaussians
to the histogram of gray values for a given image [8]. The Baredecision boundary defines the cut point
between foreground and background. After that, morpho#ddiole filling [21] is used to capture the stray
dark pixels inside the object.

We computed the following 20 features for the phytoplanidata set:

e Simple ShapeThe 8 features in this category include, Area, Perimetemg@actness, Eigenratio,
Eccentricity, Standard deviation of area across connexirtbonents, Convexity, and Rectangularity.

¢ Moments of Intensity HistogranThe 5 features here include, the mean, std, skewness, atusisur
of the histogram of grayscale values and the entropy of thealized histogram.

e Moment Invariants:These 7 features are basically the first seven moment imtarées proposed by
Hu (actually they are the log of the moments). The momentsamgputed over the binary image so
they are shape descriptors.

For the zooplankton data set we computed the Shape Indexedeatures [18]. A function of the image called

the shape index is compute&p,o) = arctaﬂi%ﬁ](p, 0), wherek is the isophote curvature of the intensity
surface, anqu is the flowline curvature. The curvatures are computed vialinations of image derivatives,
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Figure 4: Sample phytoplankton images
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Figure 5: Sample zooplankton images

which are computed using the Gaussian derivative filters.cieulate the shape index at every pixel in the
image at a range of scales, and aggregate the values inttmgrai® by quantizing the shape index. Before we
do this, however, we ignore areas of low curvature by exalugioints where the isophote (flowline) is below
the mean isophote (flowline). Currently histograms areutated witho = {1/2, 2, 2\/2} and 40 bins, yielding
120 features.

6.2 Experimental Results

We performed 10-fold stratified cross validation to testeafcthe five models. For each data set we used the
exact same folds for all of the models we tested on. The eatdtsummarized in Table 2. Our analysis of the
results are summarized in the following points.

e The tree-structured non-parametric estimate performealverage better than the other four models
it was tested on. In the case of the zooplankton data setfiinoeed significantly better (11% better
than the next best result). Part of the increased perforenan¢he zooplankton data set is due to the
fact that it contains more images per class.

e When comparing all the non-parametric models, the accuradystandard deviation humbers re-
ported agree with our intuition regarding the bias/vareatmade-off. The joint model (NPD-Joint) has
the highest variance out of all three non-parametric modéto, the naive model (NPD - Naive) has
the lowest variance. Thus, the tree-based model providech hawer bias estimate, at the cost of
a small increase in variance from the naive model. For, exainghe case of the zooplankton data
set, the accuracy of the tree-based estimate was 11% higdrethe naive model, while its standard
deviation only increased by 86%.

Overall, these results support our claim that there is aepfac such non-parametric models in the vision
community and that one can obtain a much better estimateeotiticlerlying distribution by using a tree-
structure.

| Method [ Accuracy| STD [ Accuracy| STD |

Gaussian - Joint|] 69.13% [ 6.81% ] 30.33% | 2.60%
Gaussian - Naive| 56.46% | 5.87% | 30.40% | 2.59%

NPD - Joint 49.81% | 7.67% || 32.23% | 9.20%
NPD - Naive 66.87% | 6.20% | 32.73% | 2.31%
NPD - Tree 70.26% | 6.37% | 44.42% | 2.67%

Table 2: Results on the two plankton data sets. The seconthaddolumns are the results pertaining to the
7-class phytoplankon data set, while the last two columesha results pertaining to the 8-class zooplankton
data set.



7 Conclusions

In conclusion, we proposed a simple MAP classification pdoce that models part of the dependencies be-
tween the features. We argued that such a model overcomesadiineissue with non-parametric estimation
regarding having enough samples. We analyzed the perfaenainthis model under synthetic distributions
and real-world data sets and in all of the cases we testecdhemesults came out to favor the model that we
proposed. We hope that these results will influence the eraficmodelers in the future to consider using such
powerful non-parametric models.
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