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Abstract

In this paper, we argue that the most difficult face recog-

nition problems (unconstrained face recognition) will be

solved by simultaneously leveraging the solutions to mul-

tiple vision problems including segmentation, alignment,

pose estimation, and the estimation of other hidden vari-

ables such as gender and hair color. While in theory a

single unified principle could solve all these problems si-

multaneously in a giant hidden variable model, we believe

that such an approach will be computationally, and more

importantly, statistically, intractable. Instead, we promote

studying the interactions among mid-level vision features,

such as segmentations and pose estimates, as a route to-

ward solving very difficult recognition problems. In this pa-

per, we discuss and provide results showing how pose and

face segmentations mutually influence each other, and pro-

vide a surprisingly simple method for estimating pose from

segmentations.

1. Introduction

Work has recently begun on the difficult problem of face

recognition in unconstrained environments [1, 2, 5, 10].

While there has been tremendous progress in face recog-

nition under carefully controlled conditions [15], machine

performance on the problem of unconstrained face recogni-

tion is still poor. Recently, a database specifically for study-

ing the problem of unconstrained face recognition, Labeled

Faces in the Wild (LFW), has been published [4].

It is interesting to note that the best performers on uncon-

strained face recognition data sets (discussed in more detail

below) do not use any face structure, any head structure, or

any high-level features that explicitly encode knowledge of

face or head parts or structure. For example, the best per-

forming models do not have an explicit representation of

eyes, nose, mouth, hair, skin, or any other face part. They

do not explicitly estimate pose, gender, or other hidden vari-

ables either.

From one point of view, such generic models are quite

impressive: they have won the accuracy competition so far

with no hand-specification or learning of parts. On the other

hand, it seems that some representation of “natural” hidden

variables such as pose or face parts, is likely to improve re-

sults if done in the right way. As we will show in this paper,

an analysis of the errors of the best face recognizers suggest

they could be greatly improved by using knowledge of cer-

tain high level nuisance variables such as pose, gender, hair

color, and so on.

In this paper, in accordance with the goals of the work-

shop, we describe a general long-term strategy for integrat-

ing the solutions to a variety of vision problems related to

face recognition. In particular, we believe that estimating

alignment, pose, gender, and head parts such as hair and

skin must all be done jointly with recognition in order to

achieve the highest recognition rates.

In addition to introducing this long term strategy, we pro-

vide a variety of specific results toward this end. Specif-

ically, we give results for hair-skin-background segmenta-

tion on the LFW database, we show how ground-truth seg-

mentations allow us to estimate pose quite easily, how pose

improves segmentation results, and how segmentation esti-

mates give reasonably good estimates of pose.

The structure of the rest of the paper is as follows. In

Section 2, we review recent work on the unconstrained face

recognition problem. In addition, we provide an informal

analysis of the errors typical of these algorithms. These er-

rors naturally suggest our current approach. In Section 3,

we discuss the problem of pose estimation and how it has

been addressed previously. We observe that perhaps the

simplest possible features to establish pose have never been

used in a pose estimation algorithm. In Section 4, we dis-

cuss our approach to pose estimation, which relies on an im-

age segmentation into hair (including facial hair), skin, and

background. We show that such a segmentation gives ex-

cellent estimates of pose, and is easily interpretable. In Sec-

tion 5, we then discuss our method for automatically gener-

ating the segmentations used for pose estimates. While they

are not as good as the ground truth poses, they are still good

enough to provide significant information about pose. In
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Figure 1. Labeled Faces in the Wild. These are the first six

matching pairs in the database. Our long term goal is to be able to

do pair matching under these challenging conditions.

Section 6, we show that pose, in turn, can improve segmen-

tation estimates. Finally, in Section 7, we discuss other in-

teractions among pose, alignment, segmentations, and other

hidden variables such as gender, accessories, hair-length,

and so on, that we believe will be leveraged for better re-

sults on difficult face recognition problems.

2. Unconstrained Face Recognition

The long term goal of our work is to dramatically im-

prove the performance of face recognition in unconstrained

photos. We are less interested in photos of highly unusual

situations (like strong lighting from below with no light-

ing from above), but more interested in the natural variation

of pose, expression, lighting, and other appearance factors

that occur in the everyday world. We refer to this as the

unconstrained face recognition problem. Recently, a large

database of face images called Labeled Faces in the Wild (or

LFW) has been published [4], specifically for studying the

problem of unconstrained face recognition. LFW is used in

the work here as a test bed for this type of problem.

The best recognition performance to date on LFW has

been achieved using the randomized forests algorithm of

Nowak et al. [10]. It is interesting to note that this algorithm

works well not only on classifying pairs of faces as “match-

ing” or “not matching” but also on many other types of data

such as pairs of cars. While the performance of this algo-

rithm is very impressive, it raises the question of whether

algorithms that more explicitly model the structure of faces

have the potential to do better. By “explicitly modeling”

the face, we do not mean to imply that an algorithm should

be hand built without learning the structure, but that an ex-

plicit attempt to model the structure within faces (in either

a supervised or unsupervised fashion) may lend significant

power to a face classification algorithm.

To support this hypothesis, consider in Figure 2 the pairs

of LFW images that are misclassified (for most locations

on the precision-recall curve) by the Nowak recognizer.

The left two columns show pairs of pictures that were in-

correctly labeled as “not matching” while the right two

columns show pairs of pictures that were incorrectly labeled

as “matching”. It is perhaps not surprising that the match-

ing pairs that were incorrectly labeled as mismatched were

in significantly different poses. Recognition across pose is

an extremely difficult problem, and may be one of the most

difficult aspects of face recognition.

However, much more surprising are the mismatched im-

ages which are incorrectly labeled as matching. To a person,

such mismatched pairs are egregious errors, and would sim-

ply never happen with a human in the loop. In the first case,

the hair of the two women is completely different. In addi-

tion, the woman on the right is clearly older than the woman

on the left. In the second case, while slightly more subtle, it

is clear that the man on the right has significantly less hair

than the man on the left. In addition the man on the left

has a moustache. Such features are obvious to human ob-

servers, and yet are not used by the best current recognition

algorithms.

One reason for this may be that it is difficult to estimate

these features definitively. However, modern probabilistic

methods will allow us to give estimates of the likelihood of



Figure 2. Errors by the top performing face recognition algo-

rithm. The pairs on the left were incorrectly identified as “not

matching”. The pairs on the right were incorrectly identified as

“matching”. The latter errors are particularly egregious, and ex-

hibit the ignorance of the top recognition algorithms of higher

level features such as hair color, hair texture, degree of baldness,

and presence of moustache.

these features (e.g., the probability of a moustache), which

can allow an algorithm to benefit from the features even

when there is remaining uncertainty.

3. Estimating Pose

Understanding the pose of a person’s face seems as

though it is likely to be a natural part of the recognition

process. We note informally that it is particularly easy for

people to understand the approximate pose of almost any

recognizable face. The problem of identifying pose can be

formulated in many ways. One may try to identify the pre-

cise roll, pitch, and yaw angles of the head. Often pose

algorithms, assuming little roll or pitch, simply focus on

the yaw angle (rotation about the vertical axis). Simpli-

fying even further, one may classify pose into left-facing,

right-facing, or frontal. Often, alignment (or translation) is

considered a part of pose, but here we shall consider pose

as simply the rotational part of the head position.

Like establishing alignment, understanding the pose of

a head is valuable conditioning information, as discussed

below. But how can we establish the pose of a person’s

head under very general imaging conditions?

Many pose estimation methods [3, 12] focus on facial

features such as eyes, ears, and corners of the mouth. These

methods crop out the center of each face and learn or es-

timate a function from pixels or estimated facial features

to the final pose. We believe these algorithms are, in fact,

eliminating the parts of the image most informative of pose.

In particular, we will show below that good pose estimates

can be obtained very simply from a good segmentation of

the image into skin, hair, and background. We will show

that if we can obtain such a segmentation automatically, we

can obtain very strong pose information in addition to high

level features about skin and hair that should be useful in

recognition.

Figure 3. Hand-segmented images. It is easy to guess the approx-

imate pose of these faces from their segmentations, by using the

relative position of hair and skin segments as well as the propor-

tion of the face and skin to the right of the center.

Some pose algorithms do not focus on facial features, but

instead use very general learning techniques on the entire

image [11]. While the results of such algorithms have been

quite good, we believe similar and more interpretable re-

sults can be obtained by using soft segmentations as higher

level features into a simpler algorithm. Some drawbacks

of such low-level learning methods for such complex prob-

lems is that results are difficult to reproduce, they require

large amounts of training data and relatively long training

times.

4. Pose Estimates from Segmentation

In this section, we consider the question of how well

we can estimate pose given segmentations of face images

into three regions: skin (of the central subject’s face and

possibly the neck), hair (including beards and moustaches)

and background. The background may contain other faces,

and other regions that are difficult to distinguish from facial

skin, such as the skin on a subject’s arms.

This work stems from a very simple observation, which

is that it is often quite easy for a person to estimate the ap-

proximate pose of a person merely from a segmentation of

the person’s photo. We show four such images in Figure 3.

More specifically, it is interesting to note that if one

marks the point half way between the eyes as an “origin”

of the face, then frontal faces tend to have a nearly equal

balance of skin pixels and hair pixels on either side of the

origin. As a person’s head turns to the side, more skin and

hair become visible to the observer on one side of the head,

and less skin and hair become visible on the other side. This

leads to a very simple algorithm for estimating pose from a

segmentation.

Further simplifying the process is the fact that the LFW

database was developed so that each face appears centered

in the image according to a detection by the Viola-Jones

face detector [13]. Since this face detector tends to center

faces about the middle of the eyes, it is even easier to use

the proposed method.



Actual Right Frontal Left

Right facing 19 3 0

Frontal 4 26 10

Left-facing 3 6 29

Table 1. Pose estimates from hand-labeled segmentations: training

data.

Actual Right Frontal Left

Right facing 26 4 0

Frontal 2 16 18

Left-facing 0 3 31

Table 2. Pose estimates from hand-labeled segmentations: test

data.

We use a very simple polynomial regression scheme for

estimating pose (yaw only) in which our two basic features

are the first moments of skin and hair pixels about the center

line. Starting with 100 labeled segmentations such as those

shown in Figure 3, we compute the “first moments” of hair

and skin about the vertical line running through the middle

of the image (shown by a cross). The “hair feature” fh is

given by

fh =

∑
HR

px∑
H px

,

whereHR is the set of pixels labeled “hair” in the right half

of the image, H is the set of all pixels labeled hair, and px

is the horizontal distance of a pixel from the center line of

the image. A “skin feature” sh is computed similarly.

Using these features and their squares and cross terms,

we perform a polynomial regression on pose values (given

in degrees) on a training set. Since our goal is ultimately

to use pose to help in classification, rather than to perform

accurate pose estimates, we evaluate our pose estimates by

classifying each face as left-facing, right-facing, or frontal.

Using this simple regression scheme, we obtained the

training and testing performance shown in Tables 1 and 2.

These pose estimates are adequate for many purposes. In

particular, note that in the test data there were no confusions

at all between left and right-facing poses. Since poses can

be estimated fairly well from segmentation data, the next

obvious question is how well one can estimate the segmen-

tations from which these poses were derived.

To estimate image segmentations, we started with the

superpixel representations provided as part of the LFW

database. (These superpixel representations also made it

particularly easy to do manual labeling of our image seg-

mentation data.) The basic intuition behind our segmenta-

tion method is that, when segmenting many images at once,

information can be shared across segmentations. For exam-

ple, we expect hair to be in roughly the same locations in

most images. The same is true for hair and for background

superpixels. This observation has been leveraged by other

authors [7].

5. Estimating Segments

We use a Conditional Random Field (CRF) [6] to es-

timate a segmentation. Our CRF encodes the probabil-

ity of a segmentation Y given features X of an image.

Y = {y1, . . . , yn} where n is the number of superpixels

in the image, and yi can take on one of three values corre-

sponding to “background”, “face”, and “hair”. X consists

of node features Xn and edge features Xe. For each super-

pixel i, we compute Fn features, so Xn
i is a vector of length

Fn. Similarly, for each pair of neighboring superpixels i, j,

we compute Fe features, so Xe
i,j is a vector of length Fe.

We use a log-linear CRF, with node energies ψ(yi, X
n
i )

and edge energies ψ(yi, yj, X
e
i,j) as follows

ψ(yi = l, Xn
i ) =

Fn∑

f=1

(Wn
l )f (Xn

i )f (1)

ψ(yi = l1, yj = l2, X
e
i,j) =

Fe∑

f=1

(W e
l1,l2

)f (Xe
i,j)f (2)

Wn is a set node weights, one vector of length Fn for

each label l. W e is a set of edge weights, one vector of

length Fe for each pair of labels (l1, l2). We use a symmet-

ric edge potential by letting W e
l1,l2

= W e
l2,l1

.

Putting this together, the probability of a segmentation Y

given X is

p(Y |X) =
exp(−

∑n

i=1 ψ(yi, X
n
i ) −

∑
(i,j) ψ(yi, yj, X

e
i,j))

Z(X)
(3)

where the second sum is taken over neighboring superpix-

els, and Z(X) is the partition function that normalizes the

distribution.

For node features, we compute color, position, and tex-

ture features, as well as a constant bias feature. For color,

we compute a normalized color histogram for each super-

pixel in Lab space, using 64 bins computed from kmeans

clustering. For position, we overlay an 8x8 grid on the im-

age and compute the proportion of pixels within each square

for each superpixels. For texture, we compute 64 textons as

in [8] and compute a normalized histogram for each super-

pixel. Thus, we have Fn = 193.

For edge features, we compute Fe = 3 features. We

compute Euclidean distance in Lab space between the mean

colors of neighboring superpixels. We compute the proba-

bility of boundary (Pb) [9] at each pixel, and sum the values

over all pixels along the border of two superpixels. We also

compute the χ2 test for the texture histograms h1 and h2 of

neighboring superpixels, using



χ2 =
1

2

64∑

i=1

(h1(i) − h2(i))
2

h1(i) + h2(i)
(4)

In practice, we found that using edge potentials gave ap-

proximately a half percentage increase in accuracy over a

CRF with only node potentials (corresponding to logistic re-

gression). For the node potential only CRF, adding texture

gave approximately a half percentage increase over only us-

ing color and position features.

Due to cycles in the CRF caused by the edge poten-

tials, computing the partition function Z(X) is intractable.

Therefore, to learn the weight potentials, we optimize the

log likelihood using the Bethe approximation for the parti-

tion function and loopy belief propagation to approximate

marginals for each yi [14]. We use an implementation of

L-BFGS1 to do the optimization, and also add a Gaussian

prior on the weights for regularization.

To estimate a segmentation, we use loopy belief propaga-

tion to compute the maximum posterior marginals (MPM).

Some resulting segmentations are shown in Figure 4.

These segmentations are typical of the results of our algo-

rithm. The top two segmentations are quite accurate, and

provide important information for obtaining mid-level fea-

tures for classification such as hair color and whether there

is a beard or not. The third segmentation, while not great,

still allows estimation of pose and may still be useful for

classification. The last segmentation is somewhat mislead-

ing, and throws off both pose estimates and estimates of

other quantities such as amount of hair, leading to poor es-

timates of hidden variables such as gender.

To assess the accuracy of our segmentation estimates, we

adopted an L1 error on the segmentation estimates, essen-

tially penalizing each superpixel according to the difference

between 1.0 and the probability of the correct label. That

is, if a superpixel was given a probability of 0.8 of being

hair, and it was in fact hair, then a penalty of 0.2 would be

incurred. Using this scheme, we were able to obtain seg-

mentations that were over 90% correct using our CRF esti-

mation procedure.

It is of course interesting to ask how good our pose esti-

mates are when they are based not on perfect hand-labeled

segmentations, but rather when they are based on our esti-

mated segmentations. Tables 3 and 4 summarize these re-

sults which are nearly as good as those based on manual

segmentations. Thus, our estimated segmentations provide

almost as good pose estimates, using our regression scheme,

as the hand-labeled data.

1http://vis-www.cs.umass.edu/˜weinman/code.html

Actual Right Frontal Left

Right facing 11 10 1

Frontal 7 17 16

Left-facing 1 12 25

Table 3. Pose estimates from estimated segmentations: training

data.

Actual Right Frontal Left

Right facing 15 15 0

Frontal 2 18 16

Left-facing 0 10 24

Table 4. Pose estimates from estimated segmentations: test data.

6. Improving Segmentations with Pose Infor-

mation

In addition to estimating pose from segmentations, it is

possible to use the estimated pose to refine segmentations.

If we are given the pose of someone’s head, this clearly

changes our prior notion of where we would expect to see

hair, skin, and background relative to the origin of the face

(or midpoint between the eyes).

To see whether pose information improved segmenta-

tions, we trained two separate models for segmentation, one

based on left-facing faces and one based upon right-facing

faces. Single node potentials based on position, which can

be thought of as something like a prior on the probability

of each particular segmentation label, were learned for each

model separately. These models are shown in Figure 5.

Using these separate models for segmentation did im-

prove the segmentations in accuracy by about 0.5%. While

this is not a dramatic increase, it shows that pose and seg-

mentation can each help each other.

7. Conclusions

We have demonstrated a number of phenomena:

• That segmentations of hair, skin, and background pro-

vide enough information to make reasonably good

pose estimates, both from a human observer’s point of

view and using a simple regression technique,

• That pose can be used to improve segmentations by

developing separate segmentation models conditioned

on pose, and

• A CRF-estimated segmentation is good enough to pro-

vide a great deal of information about skin, hair, and

background, and in addition can be used to estimate

pose. We are not aware of other work which focuses

specifically on the problem of segmenting a face into



Figure 4. Estimated segmentations. These images show the estimated probability of each region, with green representing skin, red

representing hair (including facial hair) and blue representing background. Mixed probabilities are simply shown as a mixture of the red,

blue, and green channels, so yellow, for example, would show a pixel with probability 0.5 of hair and probability 0.5 of skin.

skin, hair, and background. We note this is quite dif-

ferent, and significantly harder, than segmentation of

the skin only, as has been done in a number of papers.

We believe intermediate level features, such as segmen-

tations, that can be estimated quite well when done simulta-

neously on a set of images (rather than one image at a time)

will provide important new sources of information for the

difficult problem of face recognition in unconstrained envi-

ronments.

We have just started to tap this information. We believe

it will be extremely useful in estimating a number of other

highly informative hidden variables such as gender, age,

beardedness, degree of balding, color of hair, color of skin,

and so on. These are hidden variables which may be diffi-

cult to get at using a monolithic and undifferentiated neural

network architecture.

We believe that building up mid-level features in this

way will give us not only interpretability, but computational

efficiency, statistical efficiency, and ultimately, increased

accuracy.
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Figure 6. Additional results of our CRF segmentation algorithm on the LFW database.


