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We analyze how categories from recent FGVC chal-
lenges [4, 5] can be described by their textural content.
The motivation is that subtle differences between species
of birds or butterflies can often be described in terms
of the texture associated with them and that several top-
performing networks are inspired by texture-based repre-
sentations. These representations are characterized by or-
derless pooling of second-order filter activations such as in
bilinear CNNs [10] and the winner of the iNaturalist 2018
challenge [8].

Concretely, for each category we (i) visualize the “maxi-
mal images” by obtaining inputs x that maximize the prob-
ability of the particular class according to a texture-based
deep network Cθ(x), and (ii) automatically describe the
maximal images using a set of texture attributes. We use Cθ
as a multi-layer bilinear CNN as described in our prior work
on visualizing deep texture representations [9]. The models
for texture captioning were trained on our ongoing efforts
on collecting a dataset of describable textures building on
the DTD dataset[6]. As seen in Figure 1, these visualiza-
tions indicate what aspects of the texture is most discrim-
inative for each category while the descriptions provide a
language-based explanation of the same.
Visualizing categories as maximal textures. We visual-
ize the categories from Caltech-UCSD birds [14], Oxford
flowers [12], FGVC flowers [2], FGVC fungi [3] and FGVC
butterflies and moths [1] datasets. Following the approach
of [10] we extract the covariance matrix followed by signed
square-root and `2 normalization from relu{2 2,3 3,4 3,
5 3} layers of VGG-16 network [13] and train a softmax
layer to predict class labels. We train the model on the
standard training split for birds and Oxford flowers and ran-
domly select 100 images from the 200 categories with the
most images for FGVC fungi, flowers, and butterflies.

Let Ci be the predicted probability from layer i. Then
the maximal inverse image for a target class Ĉ is obtained
as: minx

∑m
i=1 L

(
Ci, Ĉ

)
+ γΓ(x). Here L is the softmax

loss and Γ(x) is the TV norm that acts as a smoothness
prior. This technique was also used to visualize inverse im-
ages in [11]. Figure 1 show the maximal images for three
categories along with their texture attributes. Additional vi-

Figure 1. Tiger Lily (left), Red Bellied Woodpecker (middle) and
Boletus Reticulatus (right) categories visualized as their training
images (top row), maximal texture images (middle row) and tex-
ture attributes (bottom row). The size of each phrase in the cloud
reflects its likelihood of being associated with the maximal texture.

sualizations selected arbitrarily across datasets are shown in
Figure 2 and 3. The maximal images indicate what discrim-
inative texture properties are learned from training images
for classification of instances which often appear in clutter,
with wide ranges of pose and lighting variations, and under
occlusions.
Describing maximal textures. In addition, we provide
the preliminary experiments on describing these textures us-
ing attribute phrases that provide a language-based explana-
tion of discriminative texture properties.

We collected a new dataset with natural language de-
scriptions of texture details based on the Describable Tex-
tures Dataset (DTD) [6]. For each image from DTD, we ask
five human annotators to provide several attribute phrases
(e.g., “black and white dots”, or “colorful patterns”). We
trained linear classifiers based on ResNet-101 [7] activa-
tions to predict the probability of each attribute phrase on
our collected dataset. For each maximal texture image, the
“phrase cloud” shows the top 20 attribute phrases, with the
font size proportional to the predicted probability.
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Figure 2. Visualization of fine-grained categories from Caltech-UCSD birds and Oxford flowers. Each example is shown as a column of
three images which consists of training examples (top), texture images (middle) and texture attributes as word clouds (bottom). The size
of each phrase in the cloud reflects its likelihood of being associated with the maximal texture.
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Figure 3. Visualization of fine-grained categories from FGVC butterflies and moths, fungi, and flowers. Each example is shown as a
column of three images which consists of training examples (top), texture images (middle) and texture attributes as word clouds (bottom).
The size of each phrase in the cloud reflects its likelihood of being associated with the maximal texture.
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