Unsupervised Hard Example Mining from Videos for Improved Object Detection
People
- SouYoung Jin
- Aruni RoyChowdhury
- Huaizu Jiang
- Ashish Singh
- Aditya Prasad
- Deep Chakraborty
- Erik Learned-Miller
Publications
-
Unsupervised Hard Example Mining from Videos for Improved Object Detection,
SouYoung Jin*, Aruni RoyChowdhury*, Huaizu Jiang, Ashish Singh, Aditya Prasad, Deep Chakraborty and Erik Learned-Miller
European Conference on Computer Vision (ECCV), 2018
[paper] [supp-pdf] [supp-video] [arxiv] [bibtex] - NEW Follow-up work on domain adaptation at CVPR 2019
Abstract
Important gains have recently been obtained in object detection by using training objectives that focus on hard negative examples, i.e., negative examples that are currently rated as positive or ambiguous by the detector. These examples can strongly influence parameters when the network is trained to correct them. Unfortunately, they are often sparse in the training data, and are expensive to obtain. In this work, we show how large numbers of hard negatives can be obtained automatically by analyzing the output of a trained detector on video sequences. In particular, detections that are isolated in time, i.e., that have no associated preceding or following detections, are likely to be hard negatives. We describe simple procedures for mining large numbers of such hard negatives (and also hard positives) from unlabeled video data. Our experiments show that retraining detectors on these automatically obtained examples often significantly improves performance. We present experiments on multiple architectures and multiple data sets, including face detection, pedestrian detection and other object categories.