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Abstract

This work addresses the unsupervised adaptation of an
existing object detector to a new target domain. We as-
sume that a large number of unlabeled videos from this
domain are readily available. We automatically obtain la-
bels on the target data by using high-confidence detections
from the existing detector, augmented with hard (misclas-
sified) examples acquired by exploiting temporal cues us-
ing a tracker. These automatically-obtained labels are then
used for re-training the original model. A modified knowl-
edge distillation loss is proposed, and we investigate several
ways of assigning soft-labels to the training examples from
the target domain. Our approach is empirically evaluated
on challenging face and pedestrian detection tasks: a face
detector trained on WIDER-Face, which consists of high-
quality images crawled from the web, is adapted to a large-
scale surveillance data set; a pedestrian detector trained on
clear, daytime images from the BDD-100K driving data set
is adapted to all other scenarios such as rainy, foggy, night-
time. Our results demonstrate the usefulness of incorporat-
ing hard examples obtained from tracking, the advantage
of using soft-labels via distillation loss versus hard-labels,
and show promising performance as a simple method for
unsupervised domain adaptation of object detectors, with
minimal dependence on hyper-parameters.

1. Introduction
The success of deep neural networks has resulted in

state-of-the-art object detectors that obtain high accuracy
on standard vision benchmarks (e.g. MS-COCO [35], PAS-
CAL VOC [11], etc.), and are readily available for down-
load as out-of-the-box detection models [16, 22]. However,
it is unrealistic to expect a single detector to generalize to
every domain. Due to the data-hungry nature of supervised
training of deep networks, it would require a lot of label-
ing efforts to re-train a detector in a completely supervised
manner for a new scenario.

Face	detection:	WIDER	à CS6

Pedestrian	detection:	BDD(clear,daytime)	à BDD(rest)

Figure 1: Unsupervised cross-domain object detection.
Top: adapting a face detector trained on labeled high-
quality web images from WIDER-Face [64] to unlabeled
CS6/IJB-S [28] video frames. Bottom: adapting a pedes-
trian detector trained on labeled images from the (clear,
daytime) split of the BDD-100k dataset [65] to unlabeled
videos from all the other conditions (e.g. night-time, foggy,
rainy, etc.).

This paper considers the following problem: Given an
off-the-shelf detector, can we let it automatically improve
itself by watching a video camera? We hope to find a new
algorithm based on unsupervised self-training that leverages
large amounts of readily-available unlabeled video data, so
that it can relieve the requirement of labeling effort for the
new domain, which is tedious, expensive, and difficult to
scale up. Such a solution may be very useful to general-
ize existing models to new domains without supervision,
e.g. a pedestrian detection system trained on imagery of US
streets can adapt to cities in Europe or Asia, or help an off-
the-shelf face detector improve its performance on video
footage. Such an algorithm would be a label efficient so-
lution for large-scale domain adaptation, obviating the need
for costly bounding-box annotations when faced with a new
domain.

Recent approaches to unsupervised domain adaptation
in deep networks have attempted to learn domain invari-



ant features through an adversarial domain discrimina-
tor [8, 14, 15, 57, 21], or by transforming labeled source
images to resemble the target domain using a generative
adversarial network (GAN) [23, 66, 5]. Self-training is a
comparatively simpler alternate strategy, where the off-the-
shelf model’s predictions on the new domain are regarded as
“pseudo-labeled” training samples [31, 7, 4, 62]; however
this approach would involve re-training using significantly
noisy labels. It becomes even more challenging when we
consider object detectors in particular, as the model may
consider a wrongly-labeled instance as a hard example [48]
during training, and expend a lot of efforts trying to learn it.

In this paper, we leverage two types of information that is
useful for object detection. First, object detectors can bene-
fit from learning the temporal consistency in videos. Some
hard cases missed by the detector could be recognized if
the object is detected in neighboring frames. We combine
both tracking and detection into one framework, and auto-
matically refine the labels based on detection and tracking
results. Second, there are examples of varying difficulty in
the new domain, and we propose a distillation-based loss
function to accommodate this relative ordering in a flexible
fashion. We design several schemes to assign soft-labels
to the target domain samples, with minimal dependence on
hyper-parameters. We evaluate our methods for improving
single-image detection performance without labels on chal-
lenging face and pedestrian detection tasks, where the target
domain contains a large number of unlabeled videos. Our
results show that training with soft labels improves over the
usual hard (i.e. 0 or 1) labels, and reaches comparable to
better performance relative to adversarial methods without
extra parameters. The paper is organized as follows – rele-
vant literature is reviewed in Sec. 2, the proposed approach
is described in Sec 3 and experimental results are presented
in Sec 4.

2. Related Work
Semi-supervised learning. Label-efficient semi-
supervised methods of training object recogni-
tion models have a long history in computer vi-
sion [44, 60, 2, 46, 32, 13]. For a survey and empir-
ical comparison of various semi-supervised learning
methods applied to deep learning, we refer the reader
to Odena et al. [40]. We focus on the self-training ap-
proach [7, 4, 62, 31], which involves creating an initial
baseline model on fully labeled data and then using this
model to estimate labels on a novel weakly-labeled or
unlabeled dataset. A subset of these estimated labels
that are most likely to be correct are selected and used
to re-train the baseline model, and the process continues
in an incremental fashion [39, 33, 37, 24, 63]. In the
context of object detection, Rosenberg et al. [44] used
the detections from a pre-trained object detector on unla-

beled data as pseudo-labels and then trained on a subset
of this noisy labeled data in an incremental re-training
procedure. Recently, the data distillation approach [41]
aimed to improve the performance of fully-supervised
state-of-the-art detectors by augmenting the training set
with massive amounts of pseudo-labeled data. In their
case, the unlabeled data was from the same domain as the
labeled data, and pseudo-labeling was done by selecting
the predictions from the baseline model using test-time
data augmentation. Jin et al. [25] use tracking in videos to
gather hard examples – i.e. objects that fail to be detected
by an object detector (false negatives); they re-train using
this extra data to improve detection on still images. Our
work shares the latter’s strategy of exploiting temporal
relationships to automatically obtain hard examples, but our
goal is fundamentally different – we seek to adapt to a new
target domain, while Jin et al. use the target domain to mine
extra training samples to improve performance back in the
source domain. We note that improvements in network
architecture specific to video object recognition [12, 59]
are orthogonal to our current motivation.
Hard examples. Emphasizing difficult training samples
has been shown to be useful in several works – e.g. online
hard example mining (OHEM) [48], boosting [45]. Wein-
shall and Amir [61] show that for certain problem classes,
when we do not have access to an optimal hypothesis (e.g. a
teacher), training on examples the current model finds dif-
ficult is more effective than a self-paced approach which
trains first on easier samples.
Unsupervised domain adaptation. There has been exten-
sive work in addressing the shift between source and target
domains [18, 3, 50] (see Csurka [9] for a recent survey).
Some approaches try to minimize the Maximum Mean Dis-
crepancy [18, 58, 36] or the CORAL metric [51] between
the distribution of features from the two domains. Another
popular direction is an adversarial setup, explored by recent
works such as ADDA [57], CyCADA [21], gradient rever-
sal layer (ReverseGrad) [15, 14], wherein the discriminator
tries to predict the domain from which a training sample is
drawn, and the model attains domain invariance by trying
to fool this discriminator, while also learning from labeled
source samples. In particular, the work of Tzeng et al. [56]
obtains soft-labels from model posteriors on source domain
images, aiming to transfer inter-category correlations infor-
mation across domains. Our soft-labels, on the other hand,
are obtained on the target domain, have only a single cat-
egory (therefore inter-class information is not applicable),
and aims at preserving information on the relative difficulty
of training examples across domains.
Cross-domain object detection. The domain shift [29]
of detectors trained on still images and applied to video
frames has been addressed in several works, mostly rely-
ing on some form of weak supervision on the target domain



and selecting target samples based on the baseline detector
confidence score [19, 54, 47, 10, 30, 6]. Several approaches
have used weakly-labeled video data for re-training object
detectors [27, 49, 54]. Our work is motivated in particu-
lar by Tang et al. [54], who use tracking information to get
pseudo-labels on weakly-labeled video frames and adopt a
curriculum-based approach, introducing easy examples (i.e.
having low loss) from the target video domain into the re-
training of the baseline detector. Despite the common mo-
tivation, our work differs on two major points – (a) we
show the usefulness of combining both hard and easy ex-
amples from the target domain when re-training the base-
line model, and (b) using the knowledge distillation loss to
counter the effect of label noise. Jamal et al. [1] address the
domain shift between various face detection datasets by re-
calibrating the final classification layer of face detectors us-
ing a residual-style layer in a low-shot learning setting. Two
recent methods [23, 8] for domain-adaptive object detec-
tion are particularly relevant to our problem. The weakly-
supervised method of Inoue et al. [23] first transforms the
labeled source (natural) images to resemble the target im-
ages (watercolors) using the CycleGAN [66], fine-tunes the
baseline (pre-trained) detector on this “transformed source”
data, and then obtains pseudo-labels on the target domain
using this domain-adapted model. The task of image gen-
eration is fairly difficult, and we posit that it may be possi-
ble to address domain adaptation without requiring a gen-
erative model as an intermediate step. The fully unsuper-
vised method of Chen et al. [8] learns a domain-invariant
representation by using an adversarial loss from a domain
discriminator [14, 15] at various levels of the Faster R-
CNN architecture, showing significant improvements when
adapting to challenging domain shifts such as clear to foggy
city scenes, simulated to real driving videos, etc. While
a powerful approach, the design of new discriminator lay-
ers and adversarial training are both challenging in practice,
especially without a labeled validation set on the target do-
main (as is the case in an unsupervised setting).

3. Proposed Approach
Automatically labeling the target domain is described in
Sec. 3.1, re-training using these pseudo-labels in Sec. 3.2
and creating soft-labels in Sec. 3.3.

3.1. Automatic Labeling of the Target Domain

Self-labeling [55] or pseudo-labeling [31] adapts a pre-
existing or baseline model, trained on a labeled source do-
main S, to a novel unlabeled target domain T , by treating
the model’s own predictions on the new dataset as training
labels. In our case, we obtain target domain pseudo-labels
by selecting high-confidence predictions of the baseline de-
tector, followed by a refinement step using a tracker.
Pseudo-labels from detections. The baseline detector is

run on every frame of the unlabeled videos in the target do-
main and if the (normalized) detector confidence score for
the i-th prediction (i.e. the model’s posterior), di, is higher
than some threshold θ, then this prediction is added to the
set of pseudo-labels. In practice, we select 0.5 for θ for
face detection and 0.8 for person detection. Note that such
a threshold is easily selected by visually inspecting a small
number of unlabeled videos from T (5 videos); we compare
with a fully-automated procedure in Sec. 4.6.
Refined labels from tracking. Exploiting the temporal
continuity between frames in a video, we can enlarge our set
of pseudo-labels with objects missed by the baseline detec-
tor. To link multiple object detections across video frames
into temporally consistent tracklets, we use the algorithm
from Jin et al. (Sec. 3 of [26]) with the MD-Net tracker [38].
Now, given a tracklet that consistently follows an object
through a video sequence, when the object detector did not
fire (i.e. di < θ) in some difficult frames, the tracker can still
correctly predict an object (see Fig. 2(a)). We expand the set
of pseudo-labels to include these “tracker-only” bounding-
boxes that were missed by the baseline detector, since these
hard examples are expected to have a larger influence on
the model’s decision boundary upon retraining [52, 48, 25].
Further, we prune out extremely short tracklets (less than 10
frames) to remove the effects caused by spurious detections.

3.2. Training on pseudo-labels

We use the popular Faster R-CNN (FRCNN) [43, 42] as
our detector. In a naive setting, we would treat both labeled
source-domain data and pseudo-labeled target-domain data
identically in terms of the loss. We give a label of 1 to
all the target domain pseudo-labeled samples, irrespective
of whether it originated from the baseline detector or the
tracker – i.e. for Xi, the i-th training sample drawn from T ,
the label yi is defined as

yi =

{
1, if Xi is a pos. sample (from detector or tracker).
0, if Xi is a neg. sample.

(1)
Note that here Xi is not an image, but a region in an image.
For training the classification branch, we use a binary cross-
entropy loss on the i-th training sample:

Li(yi, pi) = −[yi log(pi) + (1− yi) log(1− pi)] (2)

where “hard” label yi ∈ {0, 1} and the model’s predicted
posterior pi ∈ [0, 1]. This is similar to the method of Jin et
al. [25], which assigns a label of 1 for both easy and hard
positive examples during re-training.

3.3. Distillation loss with soft labels

For training data coming from T , many of the yis can be
noisy, so a “soft” version of the earlier {0, 1} labels could

1Some faces hidden following permissions in [28].
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Figure 2: (a) Pseudo-labels from detection and tracking:1In three consecutive video frames, high-confidence predictions
from the baseline detector are marked in green, and faces missed by the detector (i.e. low detector confidence score) but
picked up by the tracker are marked in yellow. (b) Soft-labeling example: baseline detector confidences are d1 = 0.78,
d2 = 0.83, d3 = 0.32; confidence threshold θ = 0.5. Following Eqn 3, high-confidence detections (green) are assigned
soft-scores si = di, i.e. s1 = 0.78 and s2 = 0.83. The tracker-only sample (yellow) has detector score below the threshold:
d3 = 0.32 < θ. It gets soft-score s3 = θ = 0.5.

help mitigate the risk from mislabeled target data. Label
smoothing in this fashion has been shown to be useful in
generalization [53, 20], in reducing the negative impact of
incorrect training labels [34] and is more informative about
the distribution of labels than one-hot encodings [56]. In
our case, each target-domain positive label can have two
possible origins – (i) high-confidence predictions from the
baseline detector or (ii) the tracklet-formation process. We
assign a soft score si to each positive target-domain sample
Xi ∈ T as follows:

si =

{
di, if Xi originates from detector.
θ, if Xi originates from tracker.

(3)

For a pseudo-label originating from the baseline detector, a
high detector confidence score di is a reasonable measure of
reliability. Tracker-only pseudo-labels, which could be ob-
jects missed by the baseline model, are emphasized during
training – their soft score is raised up to the threshold θ, al-
though the baseline’s confidence on them had fallen below
this threshold. An illustrative example is shown in Fig. 2(b).
Label interpolation. A soft label ỹi is formed by a lin-
ear interpolation between the earlier hard labels yi and soft
scores si, with λ ∈ [0, 1] as a tunable hyper-parameter.

ỹi = λsi + (1− λ)yi (4)

The loss for the i-th positive sample now looks like

Ldistilli =

{
Li(yi, pi), if Xi ∈ S.
Li(ỹi, pi), if Xi ∈ T .

(5)

Setting a high value of λ creates softer labels ỹi, trusting
the baseline source model’s prediction si more than than
the riskier target pseudo-labels yi. In this conservative set-
ting, the softer labels will decrease the overall training sig-
nal from target data, but also reduces the chance of incorrect
pseudo-labels having a large detrimental effect on the model
parameters.

We now describe two schemes to avoid explicitly depending
on the λ hyper-parameter –
I. Constrained hard examples. Assigning a label of 1
to both “easy” and “hard” examples (i.e. high-confidence
detections and tracker-only samples), as in Sec. 3.2, gives
equal importance to both. Training with just the hard ex-
amples can be sub-optimal – it might decrease the model’s
posteriors on instances it was getting correct initially. Ide-
ally, we would like to emphasize the hard examples, while
simultaneously constraining the model to maintain its pos-
teriors on the other (easy) samples. We can achieve this by
setting θ = 1 in Eq. 3 and λ = 1 in Eq. 4, which would cre-
ate a label of 1 for tracker-only “hard” examples, and a label
equal to baseline detector score for the high-confidence de-
tections, i.e. “easy” examples.
II. Cross-domain score mapping. Let us hypothetically
consider what the distribution of detection scores on T
would be like, had the model been trained on labeled target
domain data. With minimal information on T , it is reason-
able to assume this distribution of scores to be similar to that
on S . The latter is an “ideal” operating condition of training
on labeled data and running inference on within-domain im-
ages. Let the actual distribution of baseline detector scores
on T have p.d.f. f(x), and the distribution of scores on
S have p.d.f. g(x). Let their cumulative distributions be
F (x) =

∫ x
0
f(t)dt and G(x) =

∫ x
0
g(r)dr, respectively.

As a parameter-free method of creating soft-labels for our
pseudo-labels on T , we can use histogram specification [17]
to map the baseline detector scores on T to match the distri-
bution of scores on images from S, i.e. replace each target
domain score x with G−1(F (x)). The inverse mapping is
done through linear interpolation. Fig. 3(a) shows the dis-
tribution of scores for a model trained on labeled WIDER-
Face [64] and run on images from the validation split of the
same dataset. In Fig. 3(b), due to the domain shift, there is
a visible difference when this model is run on unlabeled im-
ages from CS6 surveillance videos [28]. Fig. 3(c) shows the
effect of histogram matching. Concretely, detector samples
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Figure 3: Cross-domain score mapping. Distribution
of high-confidence detection scores of a face detector
trained on labeled images from WIDER-Face [64]; samples
are from (a) WIDER-validation and (b) CS6 surveillance
videos [28]; (c) remapping the scores on CS6 to resemble
WIDER.

get soft-label G−1(F (di)), while tracker-only samples get
soft-label θ.

4. Experiments
The datasets are introduced in Sec. 4.1, followed by de-
scribing baselines (Sec. 4.2) and implementation details
(Sec. 4.3). Results are shown on faces (Sec. 4.4) and pedes-
trians (Sec. 4.5).
4.1. Datasets
Experiments are performed on two challenging scenarios –
pedestrian detection from driving videos and face detection
from surveillance videos, both of which fit neatly into our
paradigm of self-training from large amounts of unlabeled
videos and where there exists a significant domain shift be-
tween source and target. Several example images are shown
in Fig. 1. We select single-category detection tasks like face
and pedestrian to avoid the engineering and computational
burden of handling multiple categories, and focus on the
unsupervised domain adaptation aspect. A summary of the
datasets is given in Table 1.
Face: WIDER → CS6. The WIDER dataset [64] is the
the source domain, consisting of labeled faces in still im-
ages downloaded from the internet with a wide variety of
scale, pose and occlusion. The baseline detector is trained
on the WIDER Train split, which has 12,880 images and
159,424 annotated faces. The target domain consists of 179
surveillance videos from CS6, which is a subset of the IJB-
S benchmark [28]. CS6 provides a considerable shift from
WIDER, with faces being mostly low-resolution and often
occluded, and the imagery being of low picture quality, suf-
fering from camera shake and motion blurs. The video clips
are on average of 5 minutes at 30 fps, with some exception-
ally long clips running for over an hour. We selected 86
videos to form the unlabeled target train set (CS6-Train). A
test set of 80 labeled videos, containing about 70,022 im-
ages and 217,827 face annotations, is used to evaluate the
performance of the methods (CS6-Test).
Pedestrian: BDD(clear,daytime) → BDD(rest). The
Berkeley Deep Drive 100k (BDD-100k) dataset [65] con-

Table 1: Dataset summary. Details of the source and tar-
get datasets for face and pedestrian detection tasks are sum-
marized here. N.B.– for the unlabeled target train sets, the
#images and #annotations are unknown.

Dataset # images # annots # videos

WIDER 12,880 159,424 -
CS6-Train - - 86
CS6-Test 70,022 217,827 80

BDD-Source 12,477 16,784 12,477
BDD-Target-Train - - 18,000
BDD-Target-Test 8,236 10,814 8,236

sists of 100,000 driving videos from a wide variety of
scenes, weather conditions and time of day, creating a chal-
lenging and realistic scenario for domain adaptation. Each
video clip is of 40 seconds duration at 30 fps; one frame out
of every video is manually annotated. The source domain
consists of clear, daytime conditions (BDD(clear,daytime))
and the target domain consists of all other conditions in-
cluding night-time, rainy, cloudy, etc. (BDD(rest)). There
are 12,477 labeled images forming BDD-Source-Train, con-
taining 217k pedestrian annotations. We use 18k videos as
the unlabeled BDD-Target-Train set, having approximately
21.6 million video frames (not all of which would contain
pedestrians, naturally). The BDD-Target-Test set is com-
prised of 8,236 labeled images with 16,784 pedestrian an-
notations from BDD(rest).

4.2. Baselines and Ablations

We consider the following methods as our baselines:
Baseline source. Detector trained on only the labeled
source data – WIDER for faces and BDD(clear,daytime) for
pedestrians.
Pseudo-labels from detections. High-confidence detec-
tions on the target training set are considered as training
labels, followed by joint re-training of the baseline source
detector. This is the naive baseline for acquiring pseudo-
labels, denoted as Det in the results tables.
Pseudo-labels from tracking. Incorporating temporal con-
sistency using a tracker and adding them into the set of
pseudo-labels was referred to as “Hard Positives” by Jin et
al. [25]; we adopt their nomenclature and refer to this as HP.
As an ablation, we exclude detector results and keep just
the tracker-only pseudo-labels for training (Track). Ta-
ble 2 summarizes the details of the automatically gathered
pseudo-labels. Note that using temporal constraints (HP)
removes spurious isolated detections in addition to adding
missed objects, resulting in an overall decrease in data when
compared to Det for CS6.
Soft labels for distillation. The label interpolation method
as detailed in Sec. 3.3 is denoted as Label-smooth,
and we show the effect of varying λ on the validation set.
Cross-domain score distribution mapping is referred to as



Table 2: Pseudo-labels summary. Listing the number of
images and object annotations obtained on the unlabeled
CS6-Train and BDD-Target-Train videos. All the pseudo-
labels obtained from the CS6 videos are used in re-training.
For BDD, due to the massive number of videos, 100K
frames were sub-sampled to form the training set.

Method # images # annots

CS6-Det 38,514 109,314
CS6-HP 15,092 84,662
CS6-Track 15,092 32,711

BDD-Det 100,001 205,336
BDD-Track 100,001 222,755
BDD-HP 100,001 362,936

score-remap and constrained hard examples as HP-cons
in the results tables.
Domain adversarial Faster-RCNN. While there are sev-
eral domain adversarial methods such as ADDA [57] and
CyCADA [21] for object recognition, we select Chen et
al. [8] as the only method, to our knowledge, that has been
integrated into the Faster R-CNN detector. Chen et al. [8]
formulate the adversarial domain discriminator [14] with
three separate losses – (i) predicting the domain label from
the convolutional features (pre-ROI-pooling) of the entire
image; (ii) predicting the domain label from the feature-
representation of each proposed ROI; (iii) a consistency
term between the image-level and ROI-level predictions.
The region-proposals for the ROI-level loss are obtained
from the Region Proposal Network (RPN) branch of the
Faster R-CNN. In our experiments, we denote these mod-
els as – DA-im which applies the domain discriminator at
the image level and DA-im-roi, which additionally has the
instance-level discriminator and consistency term.

4.3. Training and Evaluation

We use the standard Faster R-CNN detector [43] for all our
experiments 2, from a PyTorch implementation of the De-
tectron framework [16]. An ImageNet-pre-trained ResNet-
50 network is used as a backbone, with ROI-Align region
pooling. For faces, the baseline is trained for 80k iterations,
starting from a learning rate of 0.001, dropping to 0.0001
at 50k, using 4 GPUs and a batch-size of 512. For pedes-
trians, the baseline was trained for 70k iterations, starting
with a learning rate of 0.001 and dropping to 0.0001 at 50k.
During training, face images were resized to be 800 pixels
and pedestrian images were resized to be 500 pixels on the
smaller side. Re-training for the target domain is always
done jointly, using a single GPU – a training mini-batch
is formed with samples from a labeled source image and a
pseudo-labeled target image. In practice, we sample images
alternately from source and target, fix 64 regions to be sam-
pled from each image, and accumulate gradients over the

2Webpage: http://vis-www.cs.umass.edu/unsupVideo/

two images before updating the model parameters. Domain
adversarial models were implemented following Chen et
al. [8], keeping their default hyper-parameter values.

Since unsupervised learning considers no labels at all on
the target domain, we cannot set hyper-parameters or do
best model selection based on a labeled validation set. The
re-training for all the face models were stopped at the 10k
iteration, while all the pedestrian models were stopped at
the 30k iteration. For evaluating performance, to account
for stochasticity in the training procedure, we do 5 rounds
of training and evaluate each model on the labeled images
from the test set. We use the MS-COCO toolkit as a con-
sistent evaluation metric for both face and pedestrian detec-
tion, reporting Average Precision (AP) at an IoU threshold
of 0.5.

4.4. Face detection results

The results on adapting from labeled WIDER Faces still-
images to unlabeled CS6 surveillance video imagery are
shown in Table 3.

Effect of pseudo-labels. The baseline detector, trained on
WIDER Face, gets an AP of 15.66 on CS6-Test, which un-
derscores the domain shift between WIDER and the surveil-
lance video domain. Using only the high-confidence detec-
tions (θ=0.5) as training samples, CS6-Det, boosts perfor-
mance to 17.29 AP. Using only samples from the tracker
and ignoring all pseudo-labels from the detector, CS6-
Track, brings down the performance to 11.73 AP. This
can be partly attributed to the fact that we may miss a lot of
actual faces in an image if we choose to train only on faces
picked up by tracking alone. The combination of both track-
ing and detection results for training, CS6-HP, gives slightly
better performance of 17.31 AP. This is a significant boost
over the model trained on WIDER-Face: 15.66→ 17.31.

Effect of soft-labels. Incorporating soft target labels gives
a consistent gain over the default hard labels, as seen in
the Label-smooth numbers in Table 3. The effect of
varying the distillation weight λ results in some fluctua-
tion in performance – APλ=0.3 is 19.89, APλ=0.5 is 19.56
and APλ=0.7 is 20.80. Using the completely parameter-
free methods we get 19.12 from score histogram remap-
ping (score-remap) and a slightly higher number, 20.65,
from HP-cons. Both are comparable to distillation with
λ = 0.7.

Comparison to domain discriminator. The domain ad-
versarial method (DA) gives a high performance on CS6
Test with an AP of 21.02 at the image-level (DA-im) and
22.18 with the instance-level adaptation included (DA-im-
roi). Our best numbers (20.80, 20.65) are comparable to
this, given the variance over 5 rounds of training.

http://vis-www.cs.umass.edu/unsupVideo/
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Figure 4: Qualitative results(best zoomed-in). (a) Baseline; (b) HP [25]; (c) Ours; (d) DA[8]. The domain adapted methods
pick up prominent objects missed by the baseline (cols 1,3-5). On pedestrians (cols 3-5) the detection scores from DA is
usually lower than our models’, leading to lower overall performance despite correct localization.

Table 3: WIDER → CS6. Average precision (AP) on of
the CS6 surveillance videos, reported as mean and standard
deviation over 5 rounds of training.

Method AP (mean ± std)

Baseline: WIDER 15.66 ± 0.00

CS6-Det 17.29 ± 0.85
CS6-Track 11.73 ± 0.77
CS6-HP [25] 17.31 ± 0.60

CS6-Label-smooth(λ = 0.3) 19.89 ± 0.92
CS6-Label-smooth(λ = 0.5) 19.56 ± 1.53
CS6-Label-smooth(λ = 0.7) 20.80 ± 1.34
Ours: CS6-score-remap 19.12 ± 1.29
Ours: CS6-HP-cons 20.65 ± 1.62

CS6-DA-im [8] 21.02 ± 0.96
CS6-DA-im-roi [8] 22.18 ± 1.20

4.5. Pedestrian detection results

The results on adapting from BDD-Source images from
clear, daytime videos to unconstrained settings in BDD-
Target are shown in Table 4. In addition to a new task, the
target domain of BDD-Pedestrians provides a more chal-
lenging situation than CS6. The target domain now consists
of multiple modes of appearance – snowy, rainy, cloudy,
night-time, dusk, etc.; and various combinations thereof.
Effect of pseudo-labels. The baseline model gets a fairly
low AP of 15.21, which is reasonable given the large do-
main shift from source to target. BDD-Det, which involves

training with only the high-confidence detections (thresh-
old θ = 0.8), improves significantly over the baseline with
an AP of 26.16. Using only the tracker results as pseudo-
labels, BDD-Track, gives similar performance (26.28).
BDD-HP, which combines pseudo-labels from both detec-
tion and tracking, gives the best performance among these
(27.11). This is a significant boost over the baseline: 15.21
→ 27.11.
Effect of soft-labels. Using soft labels via
Label-smooth improves results further (27.11 →
28.59), with performance fluctuating slightly with different
values of the λ hyper-parameter – APλ=0.3 is 28.59,
APλ=0.5 is 28.38 and APλ=0.7 is 28.47. Creating soft-
labels via score histogram matching (score-remap),
we get an AP of 28.02. Emphasizing tracker-only sam-
ples while constraining identical behaviour on detector
training samples (HP-cons) gives 28.43. Again, both
these methods are comparable in performance to using
Label-smooth, with the advantage of not having to set
the λ hyper-parameter.
Comparison to domain discriminator. Adapting to the
BDD-Target domain was challenging for the domain ad-
versarial (DA) models [8], most likely due to the multi-
ple complex appearance changes, unlike the WIDER→CS6
shift which has a more homogeneous target domain. The
image-level adaptation (DA-im) models gave 23.65 AP –
a significant improvement over the baseline AP of 15.21.
We had difficulties getting the DA-im-roi model to converge
during training. Using the pseudo-labels from BDD-HP for
class-balanced sampling of the ROIs during training had



a stabilizing effect (denoted by BDD-DA-im-roi*). This
gives 23.69 AP. Overall our results from training with soft
pseudo-labels are better than [8] on this dataset by ∼5 in
terms of AP.

Table 4: BDD(clear,daytime)→ BDD(rest). Average pre-
cision (AP) on the evaluation set of the BDD pedestrian
videos, reported as mean and standard deviation over 5
rounds of training.

Method AP (mean ± std)

Baseline: BDD(clear,daytime) 15.21 ± 0.00

BDD-Det 26.16 ± 0.24
BDD-Track 26.28 ± 0.35
BDD-HP [25] 27.11 ± 0.54

BDD-Label-smooth(λ = 0.3) 28.59 ± 0.67
BDD-Label-smooth(λ = 0.5) 28.38 ± 0.62
BDD-Label-smooth(λ = 0.7) 28.47 ± 0.41
Ours: BDD-score-remap 28.02 ± 0.32
Ours: BDD-HP-cons 28.43 ± 0.51

BDD-DA-im [8] 23.65 ± 0.57
BDD-DA-im-roi* 23.69 ± 0.93

Results on sub-domains. The BDD-Target domain implic-
itly contains a large number of sub-domains such as rainy,
foggy, night-time, dusk, etc. We compare the performance
of three representative models – baseline, domain adversar-
ial (DA-im) and our soft-labeling method (we pick HP-cons
as representative) on a set of such implicit sub-domains in
BDD-Target-Test for a fine-grained performance analysis
(Fig. 5). Night-time images clearly degrade performance
for all the models. Overall both domain adaptive methods
improve significantly over the baseline, with HP-cons con-
sistently outperforming DA. It is possible that higher perfor-
mance from DA can be obtained by some dataset-specific
tuning of hyper-parameters on a validation set of labeled
target-domain data.
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 night
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 day
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Figure 5: BDD(rest) sub-domains. Performance of the
baseline model, domain adversarial model (DA) and our
method (HP-cons). The number of images in each sub-
domain is written in parentheses below.

4.6. Automatic threshold selection

The hyper-parameter θ that thresholds the high-confidence
detections can be set without manual inspection of the tar-
get domain. We can pick a threshold θS on labeled source
data for a desired level of precision, say 0.95. Using score
histogram mapping S → T (Sec 3.3, Fig. 3), we can map
θS to the unlabeled target domain as θT . These results are
shown in Table 5. The thresholds selected based on visual
inspection of 5 videos are 0.5 for faces (17.31 AP) and 0.8
for pedestrians (27.11 AP), as described in Sec. 3.1. The
performance from automatically set θS→T is very close –
AP of 16.71 on CS6 and 27.11 on BDD.

Table 5: Sensitivity to detector confidence threshold for
target-domain pseudo-labels, evaluated for the HP model.
The automatically selected thresholds θS→T are 0.66 for
CS6 and 0.81 for BDD.

θ → 0.5 0.6 0.7 0.8 0.9 θS→T

CS6-Test 17.31 15.91 14.93 15.63 11.69 16.71
BDD-Test 27.23 27.68 27.30 27.11 25.85 27.11

5. Conclusion

Our empirical analysis shows self-training with soft-labels
to be at par with or better than the recent domain adversar-
ial approach [8] on two challenging tasks. Our method also
avoids the extra layers and hyper-parameters of adversar-
ial methods, which are difficult to tune for novel domains
in a fully unsupervised scenario. Our method significantly
boosts the performance of pre-trained models on the target
domain and gives a consistent improvement over assigning
hard labels to pseudo-labeled target domain samples, the
latter being prevalent in recent works [25, 41]. With min-
imal dependence on hyper-parameters, we believe our ap-
proach to be a readily applicable method for large-scale do-
main adaptation of object detectors.
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